Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Muesli with 4 g oat β-glucans lowers glucose and insulin responses after a bread meal in healthy subjects

Abstract

Objective:

To evaluate the impact of an extruded muesli product based on β-glucan-rich oat bran on postprandial glycaemia and insulinaemia.

Subject/Design:

The study is divided in two series. Blood glucose and serum insulin responses were studied after subjects consuming test meals including a serving of muesli with 3 g (series 1) and 4 g (series 2) of β-glucans, respectively. The muesli was a component in a single serving packet with muesli and yoghurt. This was served together with white wheat bread in the morning after an overnight fast. The compositions were standardized to contain 50 g available carbohydrates. As a reference meal a serving packet without β-glucans was included. The study was performed at Applied Nutrition and Food Chemistry, Lund University, Sweden. Nineteen and thirteen healthy volunteers with normal body mass index were recruited for series 1 and 2, respectively.

Results:

Muesli with 3 g of β-glucans, included in a mixed bread meal, gave no significant differences in glycaemic response compared to a reference meal without muesli and β-glucans. In contrast, muesli with 4 g of β-glucans significantly (P<0.05) lowered the glucose and insulin responses compared to the reference meal.

Conclusions:

Muesli enriched with 4 g of β-glucans reduces postprandial glucose and insulin levels to a breakfast based on high glycaemic index products. A total of 4 g of β-glucans from oats seems to be a critical level for a significant decrease in glucose and insulin responses in healthy people.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Åman P, Rimsten L, Andersson R (2004). Molecular weight distribution of beta-glucan in oat-based foods. Cereal Chem 81, 356–360.

    Article  Google Scholar 

  • Anderson JW, O'Neal DS, Riddell-Mason S, Floore TL, Dillon DW, Oeltgen PR (1995). Postprandial serum glucose, insulin, and lipoprotein responses to high- and low-fiber diets. Metabolism 44, 848–854.

    Article  CAS  PubMed  Google Scholar 

  • Aro A, Uusitupa M, Voutilainen E, Hersio K, Korhonen T, Siitonen O (1981). Improved diabetic control and hypocholesterolaemic effect induced by long-term dietary supplementation with guar gum in type 2 (insulin-independent) diabetes. Diabetologia 21, 29–33.

    Article  CAS  PubMed  Google Scholar 

  • Battilana P, Ornstein K, Minehira K, Schwarz J, Acheson K, Schneiter P et al. (2001). Mechanisms of action of beta-glucan in postprandial glucose metabolism in healthy men. Eur J Clin Nutr 55, 327–333.

    Article  CAS  PubMed  Google Scholar 

  • Beer MU, Wood PJ, Weisz J, Fillion N (1997). Effect of cooking and storage on the amout and molecular weight of (1 → 3)(1 → 4)-β-D-glucan extracted from oat products by an in vitro digestion system. Cereal Chem 74, 705–709.

    Article  CAS  Google Scholar 

  • Biörklund M, van Rees A, Mensink RP, Önning G (2005). Changes in serum lipids and postprandial glucose and insulin concentration of beverages dose-controlled trial. Eur J Clin Nutr 59, 1272–1281.

    Article  PubMed  Google Scholar 

  • Björck IME, Liljeberg HGM, Östman EM (2000). Low glycaemic-index foods. Br J Nutr 83, S149–S155.

    Article  PubMed  Google Scholar 

  • Braaten JT, Wood P, Scott FW, Riedel KD, Poste L, Collins W (1991). Oat gum lowers glucose and insulin after an oral glucose load. Am J Clin Nutr 53, 1425–1430.

    Article  CAS  PubMed  Google Scholar 

  • Brand J, Colagiuri S, Crossman S, Allen A, Roberts D, Truswell S (1991). Low-glycemic index foods improve long term glycemic control in NIDDM. Diabetes Care 14, 95–101.

    Article  CAS  PubMed  Google Scholar 

  • Brand-Miller JC, Holt SH, Pawlak DB, McMillan J (2002). Glycemic index and obesity. Am J Clin Nutr 76, 281S–285S.

    Article  CAS  PubMed  Google Scholar 

  • Brown L, Rosner B, Willett WW, Sacks FM (1999). Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr 69, 30–42.

    Article  CAS  PubMed  Google Scholar 

  • Fairchild RM, Ellis PR, Byrne AJ, Luzio SD, Mir MA (1996). A new breakfast cereal containing guar gum reduces postprandial plasma glucose and insulin concentrations in normal-weight human subjects. Br J Nutr 76, 63–73.

    Article  CAS  PubMed  Google Scholar 

  • FAO/WHO (2003). Report: Diet, nutrition and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation. WHO Technical Report Series 916.

  • Frost G, Keogh B, Smith D, Akinsanya K, Leeds A (1996). The effect of low-glycemic carbohydrate on insulin and glucose response in vivo and in vitro in patients with coronary heart disease. Metabolism 45, 669–672.

    Article  CAS  PubMed  Google Scholar 

  • Frost G, Leeds A, Trew G, Margara R, Dornhorst A (1998). Insulin sensitivity in women at risk of coronary heart disease and the effect of a low glycemic diet. Metabolism 47, 1245–1251.

    Article  CAS  PubMed  Google Scholar 

  • Frost G, Leeds AA, Doré CJ, Madeiros S, Brading S, Dornhorst A (1999). Glycaemic index as a determinant of serum HDL-cholesterol concentration. Lancet 353, 1045–1048.

    Article  CAS  PubMed  Google Scholar 

  • Gilbertson HR, Brand-Miller JC, Thorburn AW, Evans S, Chondros P, Werther GA (2001). The effect of flexible low glycemic index dietary advice versus measured carbohydrate exchange diets on glycemic control in children with type 1 diabetes. Diabetes Care 24, 1137–1143.

    Article  CAS  PubMed  Google Scholar 

  • Granfeldt Y, Wu X, Björck I (2004). Determination of the glycemic index (GI); some methodological aspects. Eur J Clin Nutr 60, 104–112.

    Article  Google Scholar 

  • Granfeldt YE, Björck IME, Hagander B (1991). On the importance of processing conditions, product thickness and egg addition for the glycaemia and hormonal responses to pasta: a comparison with bread made from ‘pasta ingredients’. Eur J Clin Nutr 45, 489–499.

    CAS  PubMed  Google Scholar 

  • Granfeldt YE, Drews A, Björck IME (1995a). Arepas made from high-amylose corn flour produce favourably low glucose and insulin responses in healthy humans. J Nutr 125, 459–465.

    CAS  PubMed  Google Scholar 

  • Granfeldt YE, Eliasson A-C, Bjorck I (2000). An examination of the possibility of lowering the glycemic index of oat and barley flakes by minimal processing. J Nutr 130, 2207–2214.

    Article  CAS  PubMed  Google Scholar 

  • Granfeldt YE, Hagander B, Björck IM (1995b). Metabolic responses to starch in oat and wheat products. On the importance of food structure, incomplete gelatinization or presence of viscous dietary fibre. Eur J Clin Nutr 49, 189–199.

    CAS  PubMed  Google Scholar 

  • Granfeldt YE, Liljeberg HGM, Drews A, Newman R, Björck IME (1994). Glucose and insulin responses to barley products: influence of food structure and amylose-amylopectin ratio. Am J Clin Nutr 59, 1075–1082.

    Article  CAS  PubMed  Google Scholar 

  • Hallfrisch J, Scholfield DJ, Behall KM (1995). Diets containing soluble oat extracts improve glucose and insulin responses of moderately hypercholosterolemic men and women. Am J Clin Nutr 61, 379–384.

    Article  CAS  PubMed  Google Scholar 

  • Holm J, Bjorck I (1992). Bioavailability of starch in various wheat-based bread products: evaluation of metabolic responses in healthy subjects and rate and extent of in vitro starch digestion. Am J Clin Nutr 55, 420–429.

    Article  CAS  PubMed  Google Scholar 

  • Holm J, Björck IME, Drews A, Asp N-G (1986). A rapid method for the analysis of starch. Starch/Stärke 38, 224–226.

    Article  CAS  Google Scholar 

  • Jenkins AL, Jenkins DJA, Zdravkovic U, Wursch P, Vuksan V (2002). Depression of the glycemic index by high levels of beta-glucan fiber in two functional foods tested in type 2 diabetes. Eur J Clin Nutr 556, 622–628.

    Article  Google Scholar 

  • Jenkins DJ, Leeds AR, Gassull MA, Cochet B, Alberti GMM (1977). Decrease in postprandial insulin and glucose concentrations by guar and pectin. Ann Intern Med 86, 20–23.

    Article  CAS  PubMed  Google Scholar 

  • Järvi AE, Karlström BE, Granfeldt YE, Björck IME, Asp N-G, Vessby BOH (1999). Improved glycemic control and lipid profile and nomalized fibrinolytic activity on a low-glycemic index diet in type 2 diabetic patients. Diabetes Care 22, 10–18.

    Article  PubMed  Google Scholar 

  • Järvi AE, Karlström BE, Granfeldt YE, Björck IME, Vessby BOH, Asp N-GL (1995). The influence of food structure on postprandial metabolism in patients with non-insulin-dependent diabetes mellitus. Am J Clin Nutr 61, 837–842.

    Article  PubMed  Google Scholar 

  • Kerckhoffs DA, Hornstra G, Mensink RP (2003). Cholesterol-lowering effect of β-glucan from oat bran in midly hypercholesterolic subjects may decrease when β-glucan is incorporated into bread and cookies. Am J Clin Nutr 78, 221–227.

    Article  CAS  PubMed  Google Scholar 

  • Liljeberg HGM, Björck IME (1998). Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with added vinegar. Eur J Clin Nutr 52, 368–371.

    Article  CAS  PubMed  Google Scholar 

  • Liljeberg HGM, Granfeldt YE, Björck IME (1992). Metabolic response to starch in bread containing intact kernels versus milled flour. Eur J Clin Nutr 46, 561–575.

    CAS  PubMed  Google Scholar 

  • Liljeberg HGM, Granfeldt YE, Björck IME (1996). Products based on a high fiber barley genotype, but not on common barley or oats, lower postprandial glucose and insulin responses in healthy humans. J Nutr 126, 458–466.

    Article  CAS  PubMed  Google Scholar 

  • Liljeberg HGM, Lönner CH, Björck IME (1995). Sourdough fermentation or addition of organic acids or corresponding salts to bread improves nutritional properties of starch in healthy humans. J Nutr 125, 1503–1511.

    CAS  PubMed  Google Scholar 

  • Liu S, Manson JE, Stampfer MJ, Holmes MD, Hu FB, Hankinson SE et al. (2001). Dietary glycemic load assessed by food-frequency questionnaire in relation to plasma high-density-lipoprotein cholesterol and fasting plasma triacylglycerols in postmenopausal women. Am J Clin Nutr 73, 560–566.

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Manson JE, Stampfer MJ, Hu FB, Giovannucci E, Colditz GA et al. (2000). A prospective study of whole-grain intake and risk of type 2 diabetes mellitus in US women. Am J Public Health 90, 1409–1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig DS (2000). Dietary glycemic index and obesity. J Nutr 130, 280S–283S.

    Article  CAS  PubMed  Google Scholar 

  • Ludwig DS MJ, Al-Zahrani A, Dallal GE, Blanco I, Roberts SB (1999). High glycemic index foods, overeating, and obesity. Pediatrics 103, 1–6.

    Article  Google Scholar 

  • McKeown NM, Meigs JB, Liu S, Saltzman E, Wilson PWF, Jaques PF (2004). Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham offspring cohort. Diabetes Care 27, 538–546.

    Article  PubMed  Google Scholar 

  • Meyer KA, Kushi LH, Jacobs Jr DR, Slavin J, Sellers TA, Folsom AR (2000). Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am J Clin Nutr 71, 921–930.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson A, Granfeldt YE, Östman E, Preston T, Björck IME (2006). Effects of GI and content of indigestible carbohydrates of cereal-based evening meals on glucose tolerance at a subsequent standardised breakfast. Eur J Clin Nutr 60, 1092–1099.

    Article  CAS  PubMed  Google Scholar 

  • Nutall F (1993). Dietary fiber in the management of diabetes. Diabetes 42, 503–508.

    Article  Google Scholar 

  • Önning G, Wallmark A, Persson M, Åkesson B, Elmståhl S, Öste R (1999). Consumtion of oat milk for 5 weeks lowers serum cholesterol and LDL cholesterol in free-living men with moderate hypercholesterolemia. Nutr Metab 43, 301–309.

    Article  Google Scholar 

  • Östman EM, Granfeldt Y, Persson L, Björck IM (2005). Vinegar supplementation lowers glucose and insulin responses and increases satiety after a bread meal in healthy subjects. Eur J Clin Nutr 59, 983–988.

    Article  PubMed  Google Scholar 

  • Pawlak DB, Ebbeling CB, Ludwig DS (2002). Should obese patients be counselled to follow a low-glycaemic index diet? Yes.. Obes Rev 3, 235–243.

    Article  CAS  PubMed  Google Scholar 

  • Pick ME, Hawrysh ZJ, Gee MI, Toth E, Garg ML, Hardin RT (1996). Oat bran concentrate bread products improve long-term control of diabetes: a pilot study. J Am Diet Assoc 96, 1254–1261.

    Article  CAS  PubMed  Google Scholar 

  • Salmerón J, Ascherio A, Rimm EB, Colditz GA, Spiegelman D, Jenkins DJ et al. (1997a). Dietary fibre, glycemic load, and risk of NIDDM in men. Diabetes Care 20, 545–550.

    Article  PubMed  Google Scholar 

  • Salmerón J, Manson JE, Stampfer MJ, Colditz GA, Wing AL, Willett WC (1997b). Dietary fibre, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. J Am Med Assoc 277, 472–477.

    Article  Google Scholar 

  • Simpson HCR, Lousley S, Geekie M, Simpson RW, Carter RD, Hockaday TDR et al. (1981). A high carbohydrate leguminous fibre diet improves all aspects of diabetic control. The Lancet 3, 1–5.

    Article  Google Scholar 

  • Slabber M, Barnard HC, Kuyl JM, Dannhauser A, Schall R (1994). Effects of a low-insulin-response, energy-restricted diet on weight loss and plasma insulin concentrations in hyperinsulinemic obese females. Am J Clin Nutr 60, 48–53.

    Article  CAS  PubMed  Google Scholar 

  • Spieth LE, Harnish JD, Lenders CM, Raezer LB, Pereira MA, Hangen SJ et al. (2000). A low-glycemic index diet in the treatment of pediatric obesity. Arch Pediatr Adolesc Med 154, 947–951.

    Article  CAS  PubMed  Google Scholar 

  • Tappy L, Gügolz E, Würsch P (1996). Effects of breakfast cereals containing various amounts of betaglucan fibers on plasma glucose and insulin responses in NIDDM subjects. Diabetes Care 19, 831–834.

    Article  CAS  PubMed  Google Scholar 

  • Toeller M, Buyken AE, Heithkamp G, Cathelineau G, Ferriss B, Michel G, Group EICS (2001). Nutrient intakes as predictors of body weight in European people with type 1 diabetes. Int J Obes 25, 1815–1822.

    Article  CAS  Google Scholar 

  • Tovar J, Granfeldt YE, Björck IME (1992). Effects of processing on blood glucose and insulin responses to starch in legumes. J Agric Food Chem 40, 1846–1851.

    Article  CAS  Google Scholar 

  • van Dam RM, Visscher AWJ, Feskens EJM, Verhoef P, Kromhout D (2000). Dietary glycemic index in relation to metabolic risk factors and incidence of coronary heart disease: the Zutphen Elderly Study. Eur J Clin Nutr 54, 726–731.

    Article  CAS  PubMed  Google Scholar 

  • Venter CS, Vorster HH, Cummings JH (1990). Effects of dietary propionate on carbohydrate and lipid metabolism in healthy volunteers. Am J Gastroenterol 85, 549–553.

    CAS  PubMed  Google Scholar 

  • Wannamethee SG, Lowe GDO, Gerald SA, Ann R, Lucy L, Whincup PH (2005). The metabolic syndrome and insulin resistance: relationship to haemostatic and inflammatory makers in older non-diabetic men. Atherosclerosis 181, 101–108.

    Article  CAS  PubMed  Google Scholar 

  • Wolever TMS, Jenkins DJA, Vuksan V, Jenkins AL, Buckley GC, Wong GS et al. (1992). Beneficial effect of a low glycaemic index diet in type 2 diabetes. Diabet Med 9, 451–458.

    Article  CAS  PubMed  Google Scholar 

  • Wood PJ, Braaten Jan T, Scott FW, Riedel Doreen, Poste LM (1990). Comparisons of viscous properties of oat and guar gum and the effects of these and oat bran on glycemic index. J Agric Food Chem 38, 753–757.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sponsorship: Skånemejerier, Malmö, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Granfeldt.

Additional information

Guarantor: Y Granfeldt.

Contributors: YG contributed to the study design and data analysis. He is also responsible for writing the manuscript. LN contributed to the study design. IB contributed to the study design and to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granfeldt, Y., Nyberg, L. & Björck, I. Muesli with 4 g oat β-glucans lowers glucose and insulin responses after a bread meal in healthy subjects. Eur J Clin Nutr 62, 600–607 (2008). https://doi.org/10.1038/sj.ejcn.1602747

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ejcn.1602747

Keywords

This article is cited by

Search

Quick links