Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Effect of placental function on fatty acid requirements during pregnancy

Abstract

The fetus has an absolute requirement for the n-3/n-6 fatty acids and docosahexaenoic acid (22:6 n-3; DHA) in particular is essential for the development of the brain and retina. Most of the fat deposition in the fetus occurs in the last 10 weeks of pregnancy. The likely rate of DHA utilisation during late pregnancy cannot be met from dietary sources alone in a significant proportion of mothers. De novo synthesis makes up some of the shortfall but the available evidence suggests that the maternal adipose tissue makes a significant contribution to placental transport to the fetus. The placenta plays a crucial role in mobilising the maternal adipose tissue and actively concentrating and channelling the important n-3/n-6 fatty acids to the fetus via multiple mechanisms including selective uptake by the syncytiotrophoblast, intracellular metabolic channelling, and selective export to the fetal circulation. These mechanisms protect the fetus against low long-chain polyunsaturated fatty acid (LCPUFA) intakes in the last trimester of pregnancy and have the effect of reducing the maternal dietary requirement for preformed DHA at this time. As a result of these adaptations, small changes in the composition of the habitual maternal diet before pregnancy are likely to be more effective in improving LCPUFA delivery to the fetus than large dietary changes in late pregnancy. There is little evidence that DHA intake/status in the second half of pregnancy affects visual and cognitive function in the offspring, but more studies are needed, particularly in children born to vegetarian and vegan and mothers who may have very low intakes of DHA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Al MD, Badart-Smook A, von Houwelingen AC, Hasaart TH & Hornstra G (1996): Fat intake of women during normal pregnancy: relationship with maternal and neonatal essential fatty acid status. J. Am. Coll. Nutr. 15, 49–55.

    CAS  PubMed  Google Scholar 

  • Al MD, Van Houwelingen AC & Hornstra G (2000): Long-chain polyunsaturated fatty acids, pregnancy and pregnancy outcome. Am. J. Clin. Nutr. 71, 285S–291S.

    CAS  PubMed  Google Scholar 

  • Al MD, Van Houwelingen AC, Kester AD, Hasaart TH, de Jong AE & Hornstra G (1995): Maternal essential fatty acid patterns during normal pregnancy and their relationship to the neonatal essential fatty acid status. Br. J. Nutr. 74, 55–68.

    CAS  PubMed  Google Scholar 

  • Auestad N, Scott DT, Janowsky JS, Jacobsen C, Carroll RE, Montalto MB, Halter R, Qiu W, Jacobs JR, Connor WE, Connor SL, Taylor JA, Neuringer M, Fitzgerald KM & Hall RT (2003): Visual, cognitive, and language assessments at 39 months: a follow-up study of children fed formulas containing long-chain polyunsaturated fatty acids to 1 year of age. Pediatrics 112, e177–e183.

    PubMed  Google Scholar 

  • Bakker EC, Van Houwelingen AC & Hornstra G (1999): Early nutrition, essential fatty acid status and visual acuity of term infants at 7 months of age. Eur. J. Clin. Nutr. 53, 872–879.

    CAS  PubMed  Google Scholar 

  • Benassayag C, Mignot TM, Haourigui M, Civel C, Hassid J, Carbonne B, Nunez EA & Ferre F (1997): High polyunsaturated fatty acid, thromboxane A2, and alpha-fetoprotein concentrations at the human feto-maternal interface. J. Lipid Res. 38, 276–286.

    CAS  PubMed  Google Scholar 

  • Benassayag C, Rigourd V, Mignot TM, Hassid J, Leroy MJ, Robert B, Civel C, Grange G, Dallot E, Tanguy J, Nunez EA & Ferre F (1999): Does high polyunsaturated free fatty acid level at the feto- maternal interface alter steroid hormone message during pregnancy? Prostaglandins Leukot. Essent. Fatty Acids 60, 393–399.

    CAS  PubMed  Google Scholar 

  • Berghaus TM, Demmelmair H & Koletzko B (2000): Essential fatty acids and their long-chain polyunsaturated metabolites in maternal and cord plasma triglycerides during late gestation. Biol. Neonate 77, 96–100.

    CAS  PubMed  Google Scholar 

  • Birch EE, Hoffman DR, Uauy R, Birch DG & Prestidge C (1998): Visual acuity and the essentiality of docosahexaenoic acid and arachidonic acid in the diet of term infants. Pediatr. Res. 44, 201–209.

    CAS  PubMed  Google Scholar 

  • Bonet B, Brunzell JD, Gown AM & Knopp RH (1992): Metabolism of very-low-density lipoprotein triglyceride by human placental cells: the role of lipoprotein lipase. Metabolism 41, 596–603.

    CAS  PubMed  Google Scholar 

  • Booth C, Elphick MC, Hendrickse W & Hull D (1981): Investigation of [14C] linoleic acid conversion into [14C] arachidonic acid and placental transfer of linoleic and palmitic acids across the perfused human placenta. J. Dev. Physiol. 3, 177–189.

    CAS  PubMed  Google Scholar 

  • Butte NF (2000): Carbohydrate and lipid metabolism in pregnancy: normal compared with gestational diabetes mellitus. Am. J. Clin. Nutr. 71, 1256–1261.

    Google Scholar 

  • Campbell FM & Dutta-Roy AK (1995): Plasma membrane fatty acid-binding protein (FABPpm) is exclusively located in the maternal facing membranes of the human placenta. FEBS Lett. 375, 227–230.

    CAS  PubMed  Google Scholar 

  • Campbell FM, Bush PG, Veerkamp JH & Dutta-Roy AK (1998a): Detection and cellular localization of plasma membrane-associated and cytoplasmic fatty acid-binding proteins in human placenta. Placenta 19, 409–415.

    CAS  PubMed  Google Scholar 

  • Campbell FM, Gordon MJ & Dutta-Roy AK (1998b): Placental membrane fatty acid-binding protein preferentially binds arachidonic and docosahexaenoic acids. Life Sci. 63, 235–240.

    CAS  PubMed  Google Scholar 

  • Carlson SE, Cooke RJ, Werkman SH & Tolley EA (1992): First year growth of preterm infants fed standard compared to marine oil n-3 supplemented formula. Lipids 27, 901–907.

    CAS  PubMed  Google Scholar 

  • Carnielli VP, Wattimena DJ, Luijendijk IH, Boerlage A, Degenhart HJ & Sauer PJ (1996): The very low birth weight premature infant is capable of synthesizing arachidonic and docosahexaenoic acids from linoleic and linolenic acids. Pediatr. Res. 40, 169–174.

    CAS  PubMed  Google Scholar 

  • Chambaz J, Ravel D, Manier MC, Pepin D, Mulliez N & Bereziat G (1985): Essential fatty acids interconversion in the human fetal liver. Biol. Neonate 47, 136–140.

    CAS  PubMed  Google Scholar 

  • Chevrier J, Dewailly E, Ayotte P, Mauriege P, Despres JP & Tremblay A (2000): Body weight loss increases plasma and adipose tissue concentrations of potentially toxic pollutants in obese individuals. Int. J. Obes. Relat. Metab. Disord. 24, 1272–1278.

    CAS  PubMed  Google Scholar 

  • Cho HP, Nakamura M & Clarke SD (1999): Cloning, expression, and fatty acid regulation of the human Delta-5 desaturase. J. Biol. Chem. 274, 37335–37339.

    CAS  PubMed  Google Scholar 

  • Christensen MS, Hoy CE, Becker CC & Redgrave TG (1995): Intestinal absorption and lymphatic transport of eicosapentaenoic (EPA), docosahexaenoic (DHA), and decanoic acids: dependence on intramolecular triacylglycerol structure. Am. J. Clin. Nutr. 61, 56–61.

    CAS  PubMed  Google Scholar 

  • Clandinin MT, Chappell JE, Heim T, Swyer PR & Chance GW (1981): Fatty acid utilization in perinatal de novo synthesis of tissues. Early Hum. Dev. 5, 355–366.

    CAS  PubMed  Google Scholar 

  • Clandinin MT, Chappell JE, Leong S, Heim T, Swyer PR & Chance GW (1980): Intrauterine fatty acid accretion rates in human brain: implications for fatty acid requirements. Early Hum. Dev. 4, 121–129.

    CAS  PubMed  Google Scholar 

  • Connor WE, Lowensohn R & Hatcher L (1996): Increased docosahexaenoic acid levels in human newborn infants by administration of sardines and fish oil during pregnancy. Lipids 31 (Suppl), S183–S187.

    CAS  PubMed  Google Scholar 

  • Crawford MA, Hassam AG, Williams SCR & Whitehouse WL (1976): Essential fatty acids and brain growth. Lancet i, 452–453.

    Google Scholar 

  • Cummings SW, Hatley W, Simpson ER & Ohashi M (1982): The binding of high and low density lipoproteins to human placental membrane fractions. J. Clin. Endocrinol. Metab. 54, 903–908.

    CAS  PubMed  Google Scholar 

  • Darmady JM & Postle AD (1982): Lipid metabolism in pregnancy. Br. J. Obstet. Gynaecol. 89, 211–215.

    CAS  PubMed  Google Scholar 

  • De Vriese SR, Matthys C, De Henauw S, De Backer G, Dhont M & Christophe AB (2002): Maternal and umbilical fatty acid status in relation to maternal diet. Prostaglandins Leukot. Essent. Fatty Acids 67, 389–396.

    CAS  PubMed  Google Scholar 

  • DeKoning EP & Karmaus W (2000): PCB exposure in utero and via breast milk. A review. J. Expos. Anal. Environ. Epidemiol. 10, 285–293.

    CAS  Google Scholar 

  • Dunlop M & Court JM (1978): Lipogenesis in developing human adipose tissue. Early Hum. Dev. 2, 123–130.

    CAS  PubMed  Google Scholar 

  • Dutta-Roy AK (2000): Transport mechanisms for long-chain polyunsaturated fatty acids in the human placenta. Am. J. Clin. Nutr. 71, 315S–322S.

    CAS  PubMed  Google Scholar 

  • Elphick MC, Filshie GM & Hull D (1978): The passage of fat emulsion across the human placenta. Br. J. Obstet. Gynaecol. 85, 610–618.

    CAS  PubMed  Google Scholar 

  • Falandysz J (1994): Polychlorinated biphenyl concentrations in cod-liver oil: evidence of a steady-state condition of these compounds in the Baltic area oils and levels noted in Atlantic oils. Arch. Environ. Contamin. Toxicol. 27, 266–271.

    CAS  Google Scholar 

  • Farquharson J, Cockburn F, Patrick WA, Jamieson EC & Logan RW (1993): Effect of diet on infant subcutaneous tissue triglyceride fatty acids. Arch. Dis. Child 69, 589–593.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frayn KN (1996): Metabolic Regulation. Oxford: Portland Press.

    Google Scholar 

  • Fruhbeck G, Gomez-Ambrosi J & Salvador J (2001): Leptin-induced lipolysis opposes the tonic inhibition of endogenous adenosine in white adipocytes. FASEB J. 15, 333–340.

    CAS  PubMed  Google Scholar 

  • Ghys A, Bakker E, Hornstra G & van den HM (2002): Red blood cell and plasma phospholipid arachidonic and docosahexaenoic acid levels at birth and cognitive development at 4 years of age. Early Hum. Dev. 69, 83–90.

    CAS  PubMed  Google Scholar 

  • Glatz JFC & vanderVusse GJ (1996): Cellular fatty acid-binding proteins: Their function and physiological significance. Prog. Lipid Res. 35, 243–282.

    CAS  PubMed  Google Scholar 

  • Glatz JFC, Luiken JJFP, vanNieuwenhoven FA & vanderVusse GJ (1997a): Molecular mechanism of cellular uptake and intracellular translocation of fatty acids. Prostaglandins Leukot. Essen. Fatty Acids 57, 3–9.

    CAS  Google Scholar 

  • Glatz JFC, vanNieuwenhoven FA, Luiken JJFP, Schaap FG & vanderVusse GJ (1997b): Role of membrane-associated and cytoplasmic fatty acid-binding proteins in cellular fatty acid metabolism. Prostaglandins Leukot. Essent. Fatty Acids 57, 373–378.

    CAS  PubMed  Google Scholar 

  • Gomez L, Carrascosa A, Yeste D, Potau N, Rique S, Ruiz-Cuevas P & Almar J (1999): Leptin values in placental cord blood of human newborns with normal intrauterine growth after 30-42 weeks of gestation. Horm. Res. 51, 10–14.

    CAS  PubMed  Google Scholar 

  • Grandjean P & Weihe P (2003): Arachidonic acid status during pregnancy is associated with polychlorinated biphenyl exposure. Am. J. Clin. Nutr. 77, 715–719.

    CAS  PubMed  Google Scholar 

  • Haggarty P (2002): Placental regulation of fatty acid delivery and its effect on fetal growth—a review. Placenta 23 (Suppl A), S28–S38.

    PubMed  Google Scholar 

  • Haggarty P, Page K, Abramovich DR, Ashton J & Brown D (1997): Long-chain polyunsaturated fatty acid transport across the perfused human placenta. Placenta 18, 635–642.

    CAS  PubMed  Google Scholar 

  • Haggarty P, Ashton J, Joynson M, Abramovich DR & Page K (1999): Effect of maternal polyunsaturated fatty acid concentration on transport by the human placenta. Biol. Neonate 75, 350–359.

    CAS  PubMed  Google Scholar 

  • Helland IB, Saugstad OD, Smith L, Saarem K, Solvoll K, Ganes T & Drevon CA (2001): Similar effects on infants of n-3 and n-6 fatty acids supplementation to pregnant and lactating women. Pediatrics 108, E82.

    CAS  PubMed  Google Scholar 

  • Helland IB, Smith L, Saarem K, Saugstad OD & Drevon CA (2003): Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children's IQ at 4 years of age. Pediatrics 111, e39–e44.

    PubMed  Google Scholar 

  • Henderson L, Gregory J & Swan G (2002): The National Diet & Nutrition Survey: Adults Aged 19 to 64 years. Types and Quantities of Food Consumed. London: HMSO.

    Google Scholar 

  • Hendrickse W, Stammers JP & Hull D (1985): The transfer of free fatty acids across the human placenta. Br. J. Obstet. Gynaecol. 92, 945–952.

    CAS  PubMed  Google Scholar 

  • Herrera E, Lasuncion MA, Gomez-Coronado D, Aranda P, Lopez-Luna P & Maier I (1988): Role of lipoprotein lipase activity on lipoprotein metabolism and the fate of circulating triglycerides in pregnancy. Am. J. Obstet. Gynecol. 158, 1575–1583.

    CAS  PubMed  Google Scholar 

  • Hoggard N, Crabtree J, Allstaff S, Abramovich DR & Haggarty P (2001): Leptin secretion to both the maternal and fetal circulation in the ex vivo perfused human term placenta. Placenta 22, 347–352.

    CAS  PubMed  Google Scholar 

  • Horwood LJ, Darlow BA & Mogridge N (2001): Breast milk feeding and cognitive ability at 7–8 years. Arch. Dis. Child Fetal Neonatal Ed 84, F23–F27.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoving EB, van Beusekom CM, Nijeboer HJ & Muskiet FA (1994): Gestational age dependency of essential fatty acids in cord plasma cholesterol esters and triglycerides. Pediatr. Res. 35, 461–469.

    CAS  PubMed  Google Scholar 

  • Hytten FE (1974): Weight gain in pregnancy. In Clinical Physiology in Obstetrics eds FE Hytten & JG Chamberlain, pp 193–233. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Imbeault P, Chevrier J, Dewailly E, Ayotte P, Despres JP, Tremblay A & Mauriege P (2001): Increase in plasma pollutant levels in response to weight loss in humans is related to in vitro subcutaneous adipocyte basal lipolysis. Int. J. Obes. Relat. Metab. Disord. 25, 1585–1591.

    CAS  PubMed  Google Scholar 

  • Innis SM (1991): Essential fatty acids in growth and development. Prog. Lipid Res. 30, 39–103.

    CAS  PubMed  Google Scholar 

  • Innis SM & Elias SL (2003): Intakes of essential n-6 and n-3 polyunsaturated fatty acids among pregnant Canadian women. Am. J. Clin. Nutr. 77, 473–478.

    CAS  PubMed  Google Scholar 

  • Jacobs MN, Santillo D, Johnston PA, Wyatt CL & French MC (1998): Organochlorine residues in fish oil dietary supplements: comparison with industrial grade oils. Chemosphere 37, 1709–1721.

    CAS  PubMed  Google Scholar 

  • Jamieson EC, Farquharson J, Logan RW, Howatson AG, Patrick WJ, Weaver LT & Cockburn F (1999): Infant cerebellar gray and white matter fatty acids in relation to age and diet. Lipids 34, 1065–1071.

    CAS  PubMed  Google Scholar 

  • Kaminsky S, Sibley CP, Maresh M, Thomas CR & D'Souza SW (1991): The effects of diabetes on placental lipase activity in the rat and human. Pediatr. Res. 30, 541–543.

    CAS  PubMed  Google Scholar 

  • Kamp F, Zakim D, Zhang F, Noy N & Hamilton JA (1995): Fatty acid flip-flop in phospholipid bilayers is extremely fast. Biochemistry 34, 11928–11937.

    CAS  PubMed  Google Scholar 

  • Kaufmann P & Scheffen I (1998): Placental development. In Fetal and Neonatal Physiology eds RA Polin & WW Fox, pp 59–70. Philadelphia: WB Saunders Company.

    Google Scholar 

  • Kuhn DC & Crawford M (1986): Placental essential fatty acid transport and prostaglandin synthesis. Prog. Lipid Res. 25, 345–353.

    CAS  PubMed  Google Scholar 

  • Lackmann GM (2002): Polychlorinated biphenyls and hexachlorobenzene in full-term neonates. Reference values updated. Biol. Neonate 81, 82–85.

    CAS  PubMed  Google Scholar 

  • Lafond J, Simoneau L, Savard R & Gagnon MC (1994): Linoleic acid transport by human placental syncytiotrophoblast membranes. Eur. J. Biochem 226, 707–713.

    CAS  PubMed  Google Scholar 

  • Lafond J, Moukdar F, Rioux A, Ech-Chadli H, Brissette L, Robidoux J, Masse A & Simoneau L (2000): Implication of ATP and sodium in arachidonic acid incorporation by placental syncytiotrophoblast brush border and basal plasma membranes in the human [In Process Citation]. Placenta 21, 661–669.

    CAS  PubMed  Google Scholar 

  • Lakin V, Haggarty P, Abramovich DR, Ashton J, Moffat CF, McNeill G, Danielian PJ & Grubb D (1998): Dietary intake and tissue concentration of fatty acids in omnivore, vegetarian and diabetic pregnancy. Prostaglandins Leukot. Essent. Fatty Acids 59, 209–220.

    CAS  PubMed  Google Scholar 

  • Larque E, Demmelmair H, Berger B, Hasbargen U & Koletzko B (2003): In vivo investigation of the placental transfer of (13)C-labeled fatty acids in humans. J. Lipid Res. 44, 49–55.

    CAS  PubMed  Google Scholar 

  • Leaf DA, Connor WE, Barstad L & Sexton G (1995): Incorporation of dietary n-3 fatty acids into the fatty acids of human adipose tissue and plasma lipid classes. Am. J. Clin. Nutr. 62, 68–73.

    CAS  PubMed  Google Scholar 

  • Linnemann K, Malek A, Sager R, Blum WF, Schneider H & Fusch C (2000): Leptin production and release in the dually in vitro perfused human placenta. J. Clin. Endocrinol. Metab. 85, 4298–4301.

    CAS  PubMed  Google Scholar 

  • Lucas A, Morley R, Cole TJ, Lister G & Leeson-Payne C (1992): Breast milk and subsequent intelligence quotient in children born preterm. Lancet 339, 261–264.

    CAS  PubMed  Google Scholar 

  • Lucas A, Morley R & Cole TJ (1998): Randomised trial of early diet in preterm babies and later intelligence quotient. BMJ 317, 1481–1487.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makrides M, Neumann MA, Byard RW, Simmer K & Gibson RA (1994): Fatty acid composition of brain, retina, and erythrocytes in breast fed infants. Am. J. Clin. Nutr. 60, 189–194.

    CAS  PubMed  Google Scholar 

  • Malcolm CA, McCulloch DL, Montgomery C, Shepherd A & Weaver LT (2003): Maternal docosahexaenoic acid supplementation during pregnancy and visual evoked potential development in term infants: a double blind, prospective, randomised trial. Arch. Dis. Child Fetal Neonatal 88, F383–F390.

    CAS  Google Scholar 

  • Masson LF, McNeill G, Tomany JO, Simpson JA, Peace HS, Wei L, Grubb DA & Bolton-Smith C (2003): Statistical approaches for assessing the relative validity of a food-frequency questionnaire: use of correlation coefficients and the kappa statistic. Public Health Nutr. 6, 313–321.

    CAS  PubMed  Google Scholar 

  • Masuzaki H, Ogawa Y, Sagawa N, Hosoda K, Matsumoto T, Mise H, Nishimura H, Yoshimasa Y, Tanaka I, Mori T & Nakao K (1997): Nonadipose tissue production of leptin: leptin as a novel placenta-derived hormone in humans. Nat. Med. 3, 1029–1033.

    CAS  PubMed  Google Scholar 

  • Matte TD, Bresnahan M, Begg MD & Susser E (2001): Influence of variation in birth weight within normal range and within sibships on IQ at age 7 years: cohort study. BMJ 323, 310–314.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald RG, Young M & Hytten FE (1975): Changes in plasma non esterified fatty acids and serum glycerol in pregnancy. Br. J. Obstet. Gynaecol. 82, 460–466.

    Google Scholar 

  • Montgomery C, Speake BK, Cameron A, Sattar N & Weaver LT (2003): Maternal docosahexaenoic acid supplementation and fetal accretion. Br. J. Nutr. 90, 135–145.

    CAS  PubMed  Google Scholar 

  • Mortimer BC, Holthouse DJ, Martins IJ, Stick RV & Redgrave TG (1994): Effects of triacylglycerol-saturated acyl chains on the clearance of chylomicron-like emulsions from the plasma of the rat. Biochim. Biophys. Acta 1211, 171–180.

    CAS  PubMed  Google Scholar 

  • Naoum HG, De Chazal RC, Eaton BM & Contractor SF (1987): Characterization and specificity of lipoprotein binding to term human placental membranes. Biochim. Biophys. Acta 902, 193–199.

    CAS  PubMed  Google Scholar 

  • O'Connor DL, Jacobs J, Hall R, Adamkin D, Auestad N, Castillo M, Connor WE, Connor SL, Fitzgerald K, Groh-Wargo S, Hartmann EE, Janowsky J, Lucas A, Margeson D, Mena P, Neuringer M, Ross G, Singer L, Stephenson T, Szabo J & Zemon V (2003): Growth and development of premature infants fed predominantly human milk, predominantly premature infant formula, or a combination of human milk and premature formula. J. Pediatr. Gastroenterol. Nutr. 37, 437–446.

    CAS  PubMed  Google Scholar 

  • Olsen SF (2001): Commentary: Mercury, PCB, and now eicosapentaenoic acid: still another reason why pregnant women should be concerned about eating seafood? Int. J. Epidemiol. 30, 1279–1280.

    CAS  PubMed  Google Scholar 

  • Olsen SF & Secher NJ (2002): Low consumption of seafood in early pregnancy as a risk factor for preterm delivery: prospective cohort study. BMJ 324, 447.

    PubMed  PubMed Central  Google Scholar 

  • Olsen SF, Secher NJ, Tabor A, Weber T, Walker JJ & Gluud C (2000): Randomised clinical trials of fish oil supplementation in high risk pregnancies. Fish Oil Trials In Pregnancy (FOTIP) Team. Br. J. Obstet. Gynaecol. 107, 382–395.

    CAS  Google Scholar 

  • Otto SJ, Houwelingen AC, Antal M, Manninen A, Godfrey K, Lopez-Jaramillo P & Hornstra G (1997): Maternal and neonatal essential fatty acid status in phospholipids: an international comparative study. Eur. J. Clin. Nutr. 51, 232–242.

    CAS  PubMed  Google Scholar 

  • Patel MN, Kleinfeld AM, Richeiri GV, Ruben S, Hiatt M & Hegyi T (1997): Serum levels of unbound free fatty acids. I: Normative data in term newborn infants. J. Am. Coll. Nutr. 16, 81–84.

    CAS  PubMed  Google Scholar 

  • Powell TL, Jansson T, Illsley NP, Wennergren M, Korotkova M & Strandvik B (1999): Composition and permeability of syncytiotrophoblast plasma membranes in pregnancies complicated by intrauterine growth restriction. Biochim. Biophys. Acta 1420, 86–94.

    CAS  PubMed  Google Scholar 

  • Reddy S, Sanders TA & Obeid O (1994): The influence of maternal vegetarian diet on essential fatty acid status of the newborn. Eur. J. Clin. Nutr. 48, 358–368.

    CAS  PubMed  Google Scholar 

  • Richards M, Hardy R, Kuh D & Wadsworth MEJ (2001): Birth weight and cognitive function in the British 1946 birth cohort: longitudinal population based study. BMJ 322, 199–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rothwell JE & Elphick MC (1982): Lipoprotein lipase activity in human and guinea-pig placenta. J. Dev. Physiol 4, 153–159.

    CAS  PubMed  Google Scholar 

  • Rump P, Mensink RP, Kester AD & Hornstra G (2001): Essential fatty acid composition of plasma phospholipids and birth weight: a study in term neonates. Am. J. Clin. Nutr. 73, 797–806.

    CAS  PubMed  Google Scholar 

  • Ruyle M, Connor WE, Anderson GJ & Lowensohn RI (1990): Placental transfer of essential fatty acids in humans: venous–arterial difference for docosahexaenoic acid in fetal umbilical erythrocytes. Proc. Natl. Acad. Sci. U.S.A. 87, 7902–7906.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salem N, Wegher B, Mena P & Uauy R (1996): Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants. Proc. Natl. Acad. Sci. U.S.A. 93, 49–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders TA & Reddy S (1992): The influence of a vegetarian diet on the fatty acid composition of human milk and the essential fatty acid status of the infant. J. Pediatr. 120, S71–S77.

    CAS  PubMed  Google Scholar 

  • Shafrir E & Barash V (1987): Placental function in maternal–fetal fat transport in diabetes. Biol. Neonate 51, 102–112.

    CAS  PubMed  Google Scholar 

  • Smuts CM, Huang M, Mundy D, Plasse T, Major S & Carlson SE (2003): A randomized trial of docosahexaenoic acid supplementation during the third trimester of pregnancy. Obstet. Gynecol. 101, 469–479.

    CAS  PubMed  Google Scholar 

  • Sparks JW, Hay WWJ, Meschia G & Battaglia FC (1983): Partition of maternal nutrients to the placenta and fetus in the sheep. Eur. J. Obstet. Gynecol. Reprod. Biol. 14, 331–340.

    CAS  PubMed  Google Scholar 

  • Sprecher H & Chen Q (1999): Polyunsaturated fatty acid biosynthesis: a microsomal- peroxisomal process. Prostaglandins Leukot. Essent. Fatty Acids 60, 317–321.

    CAS  PubMed  Google Scholar 

  • Thomas CR & Lowy C (1987): The interrelationships between circulating maternal esterified and non-esterified fatty acids in pregnant guinea pigs, and their relative contribution to the fetal circulation. J. Dev. Physiol. 9, 203–214.

    CAS  PubMed  Google Scholar 

  • van der Ven K, Van der Ven H, Thibold A, Bauer O, Kaisi M, Mbura J, Mgaya HN, Weber N, Diedrich K & Krebs D (1992): Chlorinated hydrocarbon content of fetal and maternal body tissues and fluids in full term pregnant women: a comparison of Germany versus Tanzania. Hum. Reprod. 7 (Suppl 1), 95–100.

    PubMed  Google Scholar 

  • Van Duyne CM & Havel RJ (1959): Plasma unesterified fatty acid concentration in fetal and neonatal life. Proc. Soc. Exp. Biol. Med. 102, 599–602.

    CAS  PubMed  Google Scholar 

  • Van Houwelingen AC, Puls J & Hornstra G (1992): Essential fatty acid status during early human development. Early Hum. Dev. 31, 97–111.

    CAS  PubMed  Google Scholar 

  • Van Houwelingen AC, Sorensen JD, Hornstra G, Simonis MM, Boris J, Olsen SF & Secher NJ (1995): Essential fatty acid status in neonates after fish-oil supplementation during late pregnancy. Br. J. Nutr. 74, 723–731.

    CAS  PubMed  Google Scholar 

  • Veerkamp JH, Peeters RA & Maatman RG (1991): Structural and functional features of different types of cytoplasmic fatty acid-binding proteins. Biochim. Biophys. Acta 1081, 1–24.

    CAS  PubMed  Google Scholar 

  • Veerkamp JH, van Moerkerk HTB & Zimmerman AW (2000): Effect of fatty acid-binding proteins an intermembrane fatty acid transport–studies on different types and mutant proteins. Eur. J. Biochem. 267, 5959–5966.

    CAS  PubMed  Google Scholar 

  • Velzing-Aarts FV, van der Klis FR, van der Dijs FP, van Beusekom CM, Landman H, Capello JJ & Muskiet FA (2001): Effect of three low-dose fish oil supplements, administered during pregnancy, on neonatal long-chain polyunsaturated fatty acid status at birth. Prostaglandins Leukot. Essent. Fatty Acids 65, 51–57.

    CAS  PubMed  Google Scholar 

  • Widdowson EM (1968): Growth and composition of the fetus and newborn. In The Biology of Gestation ed NS Assali, pp 1–49. New York: Academic Press.

    Google Scholar 

  • Widdowson EM (1974): Growth and composition of the fetus and newborn. In Clinical Physiology in Obstetrics eds FE Hytten & JG Chamberlain, pp 1–49. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Widdowson EM & Spray CM (1951): Chemical development in utero. Arch. Dis. Child 26, 205–214.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willatts P (2002): Long chain polyunsaturated fatty acids improve cognitive development. J. Fam. Health Care 12, 5.

    PubMed  Google Scholar 

  • Wittmaack FM, Gafvels ME, Bronner M, Matsuo H, McCrae KR, Tomaszewski JE, Robinson SL, Strickland DK & Strauss JF (1995): Localization and regulation of the human very low density lipoprotein/apolipoprotein-E receptor: trophoblast expression predicts a role for the receptor in placental lipid transport. Endocrinology 136, 340–348.

    CAS  PubMed  Google Scholar 

  • Zimmermann T, Winkler L, Moller U, Schubert H & Goetze E (1979): Synthesis of arachidonic acid in the human placenta in vitro. Biol. Neonate 35, 209–212.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Guarantor: P Haggarty.

Contributors: PH was responsible for the study conception and design, data analysis and drafting of the paper.

Corresponding author

Correspondence to P Haggarty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haggarty, P. Effect of placental function on fatty acid requirements during pregnancy. Eur J Clin Nutr 58, 1559–1570 (2004). https://doi.org/10.1038/sj.ejcn.1602016

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ejcn.1602016

Keywords

This article is cited by

Search

Quick links