Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Optimizing intravesical mitomycin C therapy in non-muscle-invasive bladder cancer

Key Points

  • Mitomycin C (MMC) is a chemotherapeutic agent commonly used for intravesical treatment of non-muscle-invasive bladder cancer (NMIBC)

  • Physiological and pharmacological approaches, such as emptying of the bladder and urine alkalization, can be taken to optimize the pharmacokinetics and, therefore, increase the efficacy of MMC therapy

  • Newer approaches such as electromotive drug administration, chemohyperthermia, maintenance MMC-based regimens and combination of MMC with other intravesical agents have been shown to increase efficacy of therapy using this agent

  • Combining MMC with novel agents targeting treatment resistance mechanisms, such as fibroblast growth factor signalling, histone deacetylases and heat shock proteins, might improve outcomes in patients with NMIBC

  • Further study of mechanisms of resistance to MMC is a promising avenue of investigation that might lead to major advances in intravesical therapy

  • As we move towards precision medicine, the goal should be to pre-select patients who will benefit from MMC therapy and avoid or alter the treatment of predicted nonresponders

Abstract

Nearly three-quarters of all newly diagnosed urothelial cancers are non-muscle-invasive bladder cancers (NMIBCs). Although bladder-preserving surgery can be used to treat NMIBC, the rate of recurrence remains high. Intravesical chemotherapy has been shown to reduce the rate of NMIBC recurrence, and mitomycin C (MMC) has become the most commonly used intravesical cytotoxic agent. Despite the popularity of this agent in the treatment of NMIBCs, many questions regarding the optimal approach to MMC therapy remain unanswered. Strategies to enhance delivery of MMC have been well studied and multiple measures are recommended for implementation in routine clinical practice. In addition, less widely investigated techniques, such as hyperthermia and electromotive drug administration, have been shown to increase the efficacy of MMC therapy. Nevertheless, even when the current 'optimal' approaches to MMC administration are used, a large proportion of NMIBCs recur. This apparent treatment resistance might be overcome by combination of MMC with other agents that have different mechanisms of action and are unlikely to have cross-resistance. Study of the mechanisms of resistance is, therefore, important to identify key pathways underlying this phenomenon, which could be rationally targeted using specific combinations of drugs. Knowledge of these mechanisms might also reveal markers of responsiveness to therapy that could be used for patient selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tolley, D. A. et al. The effect of intravesical mitomycin C on recurrence of newly diagnosed superficial bladder cancer: a further report with 7 years of follow up. J. Urol. 155, 1233–1238 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Sylvester, R. J., Oosterlinck, W. & van der Meijden, A. P. A single immediate postoperative instillation of chemotherapy decreases the risk of recurrence in patients with stage Ta–T1 bladder cancer: a meta-analysis of published results of randomized clinical trials. J. Urol. 171, 2186–2190, quiz 2435 (2004).

    Article  PubMed  Google Scholar 

  3. Dalton, J. T., Wientjes, M. G., Badalament, R. A., Drago, J. R. & Au, J. L. Pharmacokinetics of intravesical mitomycin C in superficial bladder cancer patients. Cancer Res. 51, 5144–5152 (1991).

    CAS  PubMed  Google Scholar 

  4. Maeda, T., Kikuchi, E., Matsumoto, K., Miyajima, A. & Oya, M. Urinary pH is highly associated with tumor recurrence during intravesical mitomycin C therapy for nonmuscle invasive bladder tumor. J. Urol. 185, 802–806 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Ersoy, H. et al. Single early instillation of mitomycin C and urinary alkalinization in low-risk non-muscle-invasive bladder cancer: a preliminary study. Drug Des. Devel. Ther. 7, 1–6 (2013).

    CAS  PubMed  Google Scholar 

  6. Wientjes, M. G., Badalament, R. A. & Au, J. L. Use of pharmacologic data and computer simulations to design an efficacy trial of intravesical mitomycin C therapy for superficial bladder cancer. Cancer Chemother. Pharmacol. 32, 255–262 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Au, J. L. et al. Methods to improve efficacy of intravesical mitomycin C: results of a randomized phase III trial. J. Natl Cancer Inst. 93, 597–604 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. van der Heijden, A. G., Verhaegh, G., Jansen, C. F., Schalken, J. A. & Witjes, J. A. Effect of hyperthermia on the cytotoxicity of 4 chemotherapeutic agents currently used for the treatment of transitional cell carcinoma of the bladder: an in vitro study. J. Urol. 173, 1375–1380 (2005).

    Article  PubMed  Google Scholar 

  9. Paroni, R. et al. Effect of local hyperthermia of the bladder on mitomycin C pharmacokinetics during intravesical chemotherapy for the treatment of superficial transitional cell carcinoma. Br. J. Clin. Pharmacol. 52, 273–278 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Synergo®—For the treatment of Non-muscle Invasive Bladder Cancer. The technology [online], (2014).

  11. Colombo, R. et al. Multicentric study comparing intravesical chemotherapy alone and with local microwave hyperthermia for prophylaxis of recurrence of superficial transitional cell carcinoma. J. Clin. Oncol. 21, 4270–4276 (2003).

    Article  PubMed  Google Scholar 

  12. Colombo, R., Salonia, A., Leib, Z., Pavone-Macaluso, M. & Engelstein, D. Long-term outcomes of a randomized controlled trial comparing thermochemotherapy with mitomycin-C alone as adjuvant treatment for non-muscle-invasive bladder cancer (NMIBC). BJU Int. 107, 912–918 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Lammers, R. J. et al. The role of a combined regimen with intravesical chemotherapy and hyperthermia in the management of non-muscle-invasive bladder cancer: a systematic review. Eur. Urol. 60, 81–93 (2011).

    Article  PubMed  Google Scholar 

  14. ISRCTN Register. HYMN: a trial comparing hyperthermia and mitomycin chemotherapy with a second BCG treatment, or other standard treatment, for bladder cancer that has come back [online], (2013).

  15. US National Library of Medicine. ClinicalTrials.gov [online], (2010).

  16. Di Stasi, S. M. et al. Electromotive versus passive diffusion of mitomycin C into human bladder wall: concentration-depth profiles studies. Cancer Res. 59, 4912–4918 (1999).

    CAS  PubMed  Google Scholar 

  17. Di Stasi, S. M. et al. Intravesical electromotive mitomycin C versus passive transport mitomycin C for high risk superficial bladder cancer: a prospective randomized study. J. Urol. 170, 777–782 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Di Stasi, S. M. et al. Sequential BCG and electromotive mitomycin versus BCG alone for high-risk superficial bladder cancer: a randomised controlled trial. Lancet Oncol. 7, 43–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Kaasinen, E. et al. Alternating mitomycin C and BCG instillations versus BCG alone in treatment of carcinoma in situ of the urinary bladder: a nordic study. Eur. Urol. 43, 637–645 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Rintala, E., Jauhiainen, K., Kaasinen, E., Nurmi, M. & Alfthan, O. Alternating mitomycin C and bacillus Calmette-Guerin instillation prophylaxis for recurrent papillary (stages Ta to T1) superficial bladder cancer. J. Urol. 156, 56–59; discussion 59–60 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Di Stasi, S. M. et al. Electromotive instillation of mitomycin immediately before transurethral resection for patients with primary urothelial non-muscle invasive bladder cancer: a randomised controlled trial. Lancet Oncol. 12, 871–879 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Colombo, R. et al. Neoadjuvant combined microwave induced local hyperthermia and topical chemotherapy versus chemotherapy alone for superficial bladder cancer. J. Urol. 155, 1227–1232 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Colombo, R. et al. Neoadjuvant short-term intensive intravesical mitomycin C regimen compared with weekly schedule for low-grade recurrent non-muscle-invasive bladder cancer: preliminary results of a randomised phase 2 study. Eur. Urol. 62, 797–802 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Dominguez-Escrig, J. L., Kelly, J. D., Neal, D. E., King, S. M. & Davies, B. R. Evaluation of the therapeutic potential of the epidermal growth factor receptor tyrosine kinase inhibitor gefitinib in preclinical models of bladder cancer. Clin. Cancer Res. 10, 4874–4884 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Pritchett, T. R., Wang, J. K. & Jones, P. A. Mesenchymal-epithelial interactions between normal and transformed human bladder cells. Cancer Res. 49, 2750–2754 (1989).

    CAS  PubMed  Google Scholar 

  26. Bohle, A. & Bock, P. R. Intravesical bacille Calmette-Guerin versus mitomycin C in superficial bladder cancer: formal meta-analysis of comparative studies on tumor progression. Urology 63, 682–686; discussion 686–687 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Malmstrom, P. U. et al. An individual patient data meta-analysis of the long-term outcome of randomised studies comparing intravesical mitomycin C versus bacillus Calmette-Guerin for non-muscle-invasive bladder cancer. Eur. Urol. 56, 247–256 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Dalbagni, G. Is intravesical bacillus Calmette-Guerin better than mitomycin for intermediate-risk bladder cancer? Eur. Urol. 56, 257–258; discussion 258–259 (2009).

    Article  PubMed  Google Scholar 

  29. Oddens, J. et al. Final results of an EORTC-GU cancers group randomized study of maintenance bacillus Calmette-Guerin in intermediate- and high-risk Ta, T1 papillary carcinoma of the urinary bladder: one-third dose versus full dose and 1 year versus 3 years of maintenance. Eur. Urol. 63, 462–472 (2013).

    Article  PubMed  Google Scholar 

  30. Lamm, D. L. et al. Maintenance bacillus Calmette-Guerin immunotherapy for recurrent TA, T1 and carcinoma in situ transitional cell carcinoma of the bladder: a randomized Southwest Oncology Group Study. J. Urol. 163, 1124–1129 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Krege, S., Giani, G., Meyer, R., Otto, T. & Rubben, H. A randomized multicenter trial of adjuvant therapy in superficial bladder cancer: transurethral resection only versus transurethral resection plus mitomycin C versus transurethral resection plus bacillus Calmette-Guerin. J. Urol. 156, 962–966 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Malmstrom, P. U. et al. 5-year followup of a randomized prospective study comparing mitomycin C and bacillus Calmette-Guerin in patients with superficial bladder carcinoma. J. Urol. 161, 1124–1127 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Gardmark, T., Jahnson, S., Wahlquist, R., Wijkstrom, H. & Malmstrom, P. U. Analysis of progression and survival after 10 years of a randomized prospective study comparing mitomycin-C and bacillus Calmette-Guerin in patients with high-risk bladder cancer. BJU Int. 99, 817–820 (2007).

    Article  PubMed  Google Scholar 

  34. Friedrich, M. G., Pichlmeier, U., Schwaibold, H., Conrad, S. & Huland, H. Long-term intravesical adjuvant chemotherapy further reduces recurrence rate compared with short-term intravesical chemotherapy and short-term therapy with Bacillus Calmette-Guerin (BCG) in patients with non-muscle-invasive bladder carcinoma. Eur. Urol. 52, 1123–1129 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Bouffioux, C. et al. Intravesical adjuvant chemotherapy for superficial transitional cell bladder carcinoma: results of 2 European Organization for Research and Treatment of Cancer randomized trials with mitomycin C and doxorubicin comparing early versus delayed instillations and short-term versus long-term treatment. J. Urol. 153, 934–941 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Badalato, G. M., Hruby, G., Razmjoo, M. & McKiernan, J. M. Maximizing intravesical therapy options: is there an advantage to the administration of perioperative mitomycin C prior to an induction course of BCG? Can. J. Urol. 18, 5890–5895 (2011).

    PubMed  Google Scholar 

  37. Rajala, P. et al. Cytostatic effect of different strains of Bacillus Calmette-Guerin on human bladder cancer cells in vitro alone and in combination with mitomycin C and interferon-alpha. Urol. Res. 20, 215–217 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Matsushima, M. et al. Enhanced antitumor effect of combination intravesical mitomycin C and bacillus Calmette-Guerin therapy in an orthotopic bladder cancer model. Oncol. Lett. 2, 13–19 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Witjes, J. A., Caris, C. T., Mungan, N. A., Debruyne, F. M. & Witjes, W. P. Results of a randomized phase III trial of sequential intravesical therapy with mitomycin C and bacillus Calmette-Guerin versus mitomycin C alone in patients with superficial bladder cancer. J. Urol. 160, 1668–1671; discussion 1671–1672 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Oosterlinck, W. et al. Sequential intravesical chemoimmunotherapy with mitomycin C and bacillus Calmette-Guerin and with bacillus Calmette-Guerin alone in patients with carcinoma in situ of the urinary bladder: results of an EORTC genito-urinary group randomized phase 2 trial (30993). Eur. Urol. 59, 438–446 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Rintala, E. et al. Alternating mitomycin C and bacillus Calmette-Guerin instillation therapy for carcinoma in situ of the bladder. J. Urol. 154, 2050–2053 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Delto, J. C., Kobayashi, T., Benson, M., McKiernan, J. & Abate-Shen, C. Preclinical analyses of intravesical chemotherapy for prevention of bladder cancer progression. Oncotarget 4, 269–276 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Maymi, J. L., Saltsgaver, N. & O'Donnell, M. A. Intravesical sequential gemcitabine- mitomycin chemotherapy as salvage treatment for patients with refractory superficial bladder cancer [abstract 840]. J. Urol. 175 (Suppl.), 271 (2006).

    Article  Google Scholar 

  44. Lightfoot, A. J. et al. Multi-institutional analysis of sequential intravesical gemcitabine and mitomycin C chemotherapy for non-muscle invasive bladder cancer. Urol. Oncol. 32, 35. e15–e19 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Breyer, B. N., Whitson, J. M., Carroll, P. R. & Konety, B. R. Sequential intravesical gemcitabine and mitomycin C chemotherapy regimen in patients with non-muscle invasive bladder cancer. Urol. Oncol. 28, 510–514 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, C. H. et al. A cocktail regimen of intravesical mitomycin-C, doxorubicin, and cisplatin (MDP) for non-muscle-invasive bladder cancer. Urol. Oncol. 30, 421–427 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Mullerad, M. et al. Herpes simplex virus based gene therapy enhances the efficacy of mitomycin C for the treatment of human bladder transitional cell carcinoma. J. Urol. 174, 741–746 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Deb, A. A. et al. Potentiation of mitomycin C tumoricidal activity for transitional cell carcinoma by histone deacetylase inhibitors in vitro. J. Urol. 186, 2426–2433 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Villalona-Calero, M. A. et al. Phase I study of low-dose suramin as a chemosensitizer in patients with advanced non-small cell lung cancer. Clin. Cancer Res. 9, 3303–3311 (2003).

    CAS  PubMed  Google Scholar 

  50. Xin, Y. et al. Low dose suramin as a chemosensitizer of bladder cancer to mitomycin C. J. Urol. 174, 322–327 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Lamont, F. R. et al. Small molecule FGF receptor inhibitors block FGFR-dependent urothelial carcinoma growth in vitro and in vivo. Br. J. Cancer 104, 75–82 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Gust, K. M. et al. Fibroblast growth factor receptor 3 is a rational therapeutic target in bladder cancer. Mol. Cancer Ther. 12, 1245–1254 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hartl, F. U. & Hayer-Hartl, M. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol. 16, 574–581 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Calderwood, S. K., Khaleque, M. A., Sawyer, D. B. & Ciocca, D. R. Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem. Sci. 31, 164–172 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Parsell, D. A. & Lindquist, S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27, 437–496 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Zoubeidi, A. & Gleave, M. Small heat shock proteins in cancer therapy and prognosis. Int. J. Biochem. Cell Biol. 44, 1646–1656 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Lebret, T. et al. Heat shock proteins HSP27, HSP60, HSP70, and HSP90: expression in bladder carcinoma. Cancer 98, 970–977 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Kassem, H., Sangar, V., Cowan, R., Clarke, N. & Margison, G. P. A potential role of heat shock proteins and nicotinamide N-methyl transferase in predicting response to radiation in bladder cancer. Int. J. Cancer 101, 454–460 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Kamada, M. et al. HSP27 knockdown using nucleotide-based therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells. Mol. Cancer Ther. 6, 299–308 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Richards, E., Begum, T. & Masters, J. Thermotolerance and sensitivity of human cancer cells to cisplatin and doxorubicin. Int. J. Oncol. 8, 1265–1271 (1996).

    CAS  PubMed  Google Scholar 

  61. Behnsawy, H. M., Miyake, H., Kusuda, Y. & Fujisawa, M. Small interfering RNA targeting heat shock protein 70 enhances chemosensitivity in human bladder cancer cells. Urol. Oncol. 31, 843–848 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. He, L. F. et al. Enhanced sensitivity to mitomycin C by abating heat shock protein 70 expression in human bladder cancer cell line of BIU-87. Chin. Med. J. (Engl.) 118, 1965–1972 (2005).

    CAS  Google Scholar 

  63. Hadaschik, B. A. et al. Intravesically administered antisense oligonucleotides targeting heat-shock protein-27 inhibit the growth of non-muscle-invasive bladder cancer. BJU Int. 102, 610–616 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  65. Endicott, J. A. & Ling, V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu. Rev. Biochem. 58, 137–171 (1989).

    Article  CAS  PubMed  Google Scholar 

  66. Schuldes, H., Dolderer, J. H., Schoch, C., Bickeboller, R. & Woodcock, B. G. Cytostatic sensitivity and MDR in bladder carcinoma cells: implications for tumor therapy. Int. J. Clin. Pharmacol. Ther. 38, 204–208 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Tasaki, Y. et al. Reversal by a dihydropyridine derivative of non-P-glycoprotein-mediated multidrug resistance in etoposide-resistant human prostatic cancer cell line. J. Urol. 154, 1210–1216 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Shinohara, N., Liebert, M., Wedemeyer, G., Chang, J. H. & Grossman, H. B. Evaluation of multiple drug resistance in human bladder cancer cell lines. J. Urol. 150, 505–509 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Park, J. et al. P-glycoprotein expression in bladder cancer. J. Urol. 151, 43–46 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Naito, S. et al. Correlation between the expression of P-glycoprotein and multidrug-resistant phenotype in transitional cell carcinoma of the urinary tract. Eur. Urol. 22, 158–162 (1992).

    Article  CAS  PubMed  Google Scholar 

  71. Hasegawa, S. et al. Expression of multidrug resistance-associated protein (MRP), MDR1 and DNA topoisomerase II in human multidrug-resistant bladder cancer cell lines. Br. J. Cancer 71, 907–913 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nakagawa, M. et al. Clinical significance of multi-drug resistance associated protein and P-glycoprotein in patients with bladder cancer. J. Urol. 157, 1260–1264; discussion 1264–1265 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Pu, Y. S. et al. Expression of MDR-1 gene in transitional cell carcinoma and its correlation with chemotherapy response. J. Urol. 156, 271–275 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Gontero, P. et al. Ex vivo chemosensitivity to mitomycin C in bladder cancer and its relationship with P-glycoprotein and apoptotic factors. Anticancer Res. 22, 4073–4080 (2002).

    CAS  PubMed  Google Scholar 

  75. Frisch, S. M. & Francis, H. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124, 619–626 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Frisch, S. M. & Ruoslahti, E. Integrins and anoikis. Curr. Opin. Cell Biol. 9, 701–706 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Sethi, T. et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat. Med. 5, 662–668 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Aoudjit, F. & Vuori, K. Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells. Oncogene 20, 4995–5004 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Damiano, J. S., Cress, A. E., Hazlehurst, L. A., Shtil, A. A. & Dalton, W. S. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93, 1658–1667 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Pan, C. W. et al. Cell adhesion to fibronectin induces mitomycin C resistance in bladder cancer cells. BJU Int. 104, 1774–1779 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Zhang, C. J. et al. Engagement of integrin-β1 induces resistance of bladder cancer cells to mitomycin-C. Urology 79, 638–643 (2012).

    Article  PubMed  Google Scholar 

  82. Tannock, I. F., Lee, C. M., Tunggal, J. K., Cowan, D. S. & Egorin, M. J. Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy. Clin. Cancer Res. 8, 878–884 (2002).

    CAS  PubMed  Google Scholar 

  83. Burgues, J. P. et al. A chemosensitivity test for superficial bladder cancer based on three-dimensional culture of tumour spheroids. Eur. Urol. 51, 962–969; discussion 969–970 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Gazzaniga, P. et al. A chemosensitivity test to individualize intravesical treatment for non-muscle-invasive bladder cancer. BJU Int. 104, 184–188 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Lee, J. K. et al. A strategy for predicting the chemosensitivity of human cancers and its application to drug discovery. Proc. Natl Acad. Sci. USA 104, 13086–13091 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Smith, S. C., Baras, A. S., Lee, J. K. & Theodorescu, D. The COXEN principle: translating signatures of in vitro chemosensitivity into tools for clinical outcome prediction and drug discovery in cancer. Cancer Res. 70, 1753–1758 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Smith, S. C. et al. Use of yeast chemigenomics and COXEN informatics in preclinical evaluation of anticancer agents. Neoplasia 13, 72–80 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shen, K. et al. A systematic evaluation of multi-gene predictors for the pathological response of breast cancer patients to chemotherapy. PLoS ONE 7, e49529 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ferriss, J. S. et al. Multi-gene expression predictors of single drug responses to adjuvant chemotherapy in ovarian carcinoma: predicting platinum resistance. PLoS ONE 7, e30550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.Z., J.A. and J.I. researched the data for the article, H.Z., A.S. and P.B. made substantial contributions to discussion of content, and all authors contributed substantially to writing and review/editing of the manuscript before publication.

Corresponding author

Correspondence to Peter Black.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zargar, H., Aning, J., Ischia, J. et al. Optimizing intravesical mitomycin C therapy in non-muscle-invasive bladder cancer. Nat Rev Urol 11, 220–230 (2014). https://doi.org/10.1038/nrurol.2014.52

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2014.52

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing