Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Differentiating the rapid actions of cocaine

Abstract

The subjective effects of intravenous cocaine are felt almost immediately, and this immediacy plays an important part in the drug's rewarding impact. The primary rewarding effect of cocaine involves blockade of dopamine reuptake; however, the onset of this action is too late to account for the drug's initial effects. Recent studies suggest that cocaine-predictive cues — including peripheral interoceptive cues generated by cocaine itself — come to cause more direct and earlier reward signalling by activating excitatory inputs to the dopamine system. The conditioned activation of the dopamine system by cocaine-predictive cues offers a new target for potential addiction therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed extracellular dopamine fluctuations following cocaine self-administration.

Similar content being viewed by others

References

  1. Schultz, W. Subjective neuronal coding of reward: temporal value discounting and risk. Eur. J. Neurosci. 31, 2124–2135 (2010).

    Article  Google Scholar 

  2. Black, J., Belluzzi, J. & Stein, L. Reinforcement delay of one second severely impairs acquisition of brain self-stimulation. Brain Res. 359, 113–119 (1985).

    Article  CAS  Google Scholar 

  3. Fouriezos, G. & Randall, D. The cost of delaying rewarding brain stimulation. Behav. Brain Res. 87, 111–113 (1997).

    Article  CAS  Google Scholar 

  4. Childress, A. R., Ehrman, R., Rohsenow, D., Robbins, S. and O'Brien, C. P. in Substance Abuse, a Comprehensive Textbook (eds Lowinson, J., Ruiz, P. & Millman, R. B.) 56–69 (Williams and Wilkins, Baltimore, 1992).

    Google Scholar 

  5. Heikkila, R. E., Orlansky, H. & Cohen, G. Studies on the distinction between uptake inhibition and release of (3H)dopamine in rat brain tissue slices. Biochem. Pharmacol. 24, 847–852 (1975).

    Article  CAS  Google Scholar 

  6. Ritz, M. C., Lamb, R. J., Goldberg, S. R. & Kuhar, M. J. Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237, 1219–1223 (1987).

    Article  CAS  Google Scholar 

  7. Thomsen, M., Han, D. D., Gu, H. H. & Caine, S. B. Lack of cocaine self-administration in mice expressing a cocaine-insensitive dopamine transporter. J. Pharmacol. Exp. Ther. 331, 204–211 (2009).

    Article  CAS  Google Scholar 

  8. Goeders, N. E. & Smith, J. E. Cortical dopaminergic involvement in cocaine reinforcement. Science 221, 773–775 (1983).

    Article  CAS  Google Scholar 

  9. Carlezon, W. J., Devine, D. & Wise, R. Habit-forming actions of nomifensine in nucleus accumbens. Psychopharmacology 122, 194–197 (1995).

    Article  CAS  Google Scholar 

  10. Ikemoto, S. Involvement of the olfactory tubercle in cocaine reward: intracranial self-administration studies. J. Neurosci. 23, 9305–9511 (2003).

    Article  CAS  Google Scholar 

  11. Premkumar, L. S. Block of a Ca(2+)-activated potassium channel by cocaine. J. Membr. Biol. 204, 129–136 (2005).

    Article  CAS  Google Scholar 

  12. Lee, Y., Lee, C. H. & Oh, U. Painful channels in sensory neurons. Mol. Cells 20, 315–324 (2005).

    CAS  PubMed  Google Scholar 

  13. Chen, Y. H., Lin, C. H., Lin, P. L. & Tsai, M. C. Cocaine elicits action potential bursts in a central snail neuron: the role of delayed rectifying K+ current. Neuroscience 138, 257–280 (2006).

    Article  CAS  Google Scholar 

  14. Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998).

    Article  CAS  Google Scholar 

  15. You, Z. B., Wang, B., Zitzman, D., Azari, S. & Wise, R. A. A role for conditioned ventral tegmental glutamate release in cocaine seeking. J. Neurosci. 27, 10546–10555 (2007).

    Article  CAS  Google Scholar 

  16. Wise, R. A., Wang, B. & You, Z. B. Cocaine serves as a peripheral interoceptive conditioned stimulus for central glutamate and dopamine release. PLoS ONE 3, e2846 (2008).

    Article  Google Scholar 

  17. Xi, Z. X. & Gardner, E. L. Hypothesis-driven medication discovery for the treatment of psychostimulant addiction. Curr. Drug Abuse Rev. 1, 303–327 (2008).

    Article  CAS  Google Scholar 

  18. Ikemoto, S. & Wise, R. A. Mapping of chemical trigger zones for reward. Neuropharmacology 47 (Suppl. 1), 190–201 (2004).

    Article  CAS  Google Scholar 

  19. Pettit, H. O. & Justice, J. B. Dopamine in the nucleus accumbens during cocaine self-administration as studied by in vivo microdialysis. Pharmacol. Biochem. Behav. 34, 899–904 (1989).

    Article  CAS  Google Scholar 

  20. Bradberry, C. W., Barrett-Larimore, R. L., Jatlow, P. & Rubino, S. R. Impact of self-administered cocaine and cocaine cues on extracellular dopamine in mesolimbic and sensorimotor striatum in rhesus monkeys. J. Neurosci. 20, 3874–3883 (2000).

    Article  CAS  Google Scholar 

  21. Wise, R. A. et al. Fluctuations in nucleus accumbens dopamine concentration during intravenous cocaine self-administration in rats. Psychopharmacology 120, 10–20 (1995).

    Article  CAS  Google Scholar 

  22. de Wit, H. & Wise, R. A. Blockade of cocaine reinforcement in rats with the dopamine receptor blocker pimozide, but not with the noradrenergic blockers phentolamine or phenoxybenzamine. Can. J. Psychol. 31, 195–203 (1977).

    Article  CAS  Google Scholar 

  23. Risner, M. E. & Jones, B. E. Intravenous self-administration of cocaine and norcocaine by dogs. Psychopharmacology 71, 83–89 (1980).

    Article  CAS  Google Scholar 

  24. Ettenberg, A., Pettit, H. O., Bloom, F. E. & Koob, G. F. Heroin and cocaine intravenous self-administration in rats: mediation by separate neural systems. Psychopharmacology 78, 204–209 (1982).

    Article  CAS  Google Scholar 

  25. Roberts, D. C. S., Corcoran, M. E. & Fibiger, H. C. On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine. Pharmacol. Biochem. Behav. 6, 615–620 (1977).

    Article  CAS  Google Scholar 

  26. Roberts, D. C. S., Koob, G. F., Klonoff, P. & Fibiger, H. C. Extinction and recovery of cocaine self-administration following 6-OHDA lesions of the nucleus accumbens. Pharmacol. Biochem. Behav. 12, 781–787 (1980).

    Article  CAS  Google Scholar 

  27. Roberts, D. C. S. & Koob, G. Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats. Pharmacol. Biochem. Behav. 17, 901–904 (1982).

    Article  CAS  Google Scholar 

  28. Mogenson, G. J., Jones, D. L. & Yim, C. Y. From motivation to action: functional interface between the limbic system and the motor system. Prog. Neurobiol. 14, 69–97 (1980).

    Article  CAS  Google Scholar 

  29. Lecca, D., Cacciapaglia, F., Valentini, V., Acquas, E. & Di Chiara, G. Differential neurochemical and behavioral adaptation to cocaine after response contingent and noncontingent exposure in the rat. Psychopharmacology 191, 653–667 (2007).

    Article  CAS  Google Scholar 

  30. Aragona, B. J. et al. Preferential enhancement of dopamine transmission within the nucleus accumbens shell by cocaine is attributable to a direct increase in phasic dopamine release events. J. Neurosci. 28, 8821–8831 (2008).

    Article  CAS  Google Scholar 

  31. Sulzer, D., Sonders, M. S., Poulsen, N. W. & Galli, A. Mechanisms of neurotransmitter release by amphetamines: a review. Prog. Neurobiol. 75, 406–433 (2005).

    Article  CAS  Google Scholar 

  32. Venton, B. J. et al. Cocaine increases dopamine release by mobilization of a synapsin-dependent reserve pool. J. Neurosci. 26, 3206–3209 (2006).

    Article  CAS  Google Scholar 

  33. Brown, P. L. & Kiyatkin, E. A. Sensory effects of intravenous cocaine on dopamine and non-dopamine ventral tegmental area neurons. Brain Res. 1218, 230–249 (2008).

    Article  CAS  Google Scholar 

  34. Nicolaysen, L. C. & Justice, J. B. J. Effects of cocaine on release and uptake of dopamine in vivo: differentiation by mathematical modeling. Pharmacol. Biochem. Behav. 31, 327–335 (1988).

    Article  CAS  Google Scholar 

  35. Rocha, B. A. et al. Cocaine self-administration in dopamine-transporter knockout mice. Nature Neurosci. 1, 132–137 (1998).

    Article  CAS  Google Scholar 

  36. Sora, I. et al. Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockokuts eliminate cocaine place prefrerence. Proc. Natl Acad. Sci. USA 98, 5300–5305 (2001).

    Article  CAS  Google Scholar 

  37. Carboni, E., Tanda, G. L., Frau, R. & Di Chiara, G. Blockade of the noradrenaline carrier increases extracellular dopamine concentrations in the prefrontal cortex: evidence that dopamine is taken up in vivo by noradrenergic terminals. J. Neurochem. 55, 1067–1070 (1990).

    Article  CAS  Google Scholar 

  38. Moron, J. A., Brockington, A., Wise, R. A., Rocha, B. A. & Hope, B. T. Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J. Neurosci. 22, 389–395 (2002).

    Article  CAS  Google Scholar 

  39. Carboni, E. et al. Cocaine and amphetamine increase extracellular dopamine in the nucleus accumbens of mice lacking the dopamine transporter gene. J. Neurosci. 21, 1–4 (2001).

    Article  Google Scholar 

  40. Stuber, G. D., Roitman, M. F., Phillips, P. E., Carelli, R. M. & Wightman, R. M. Rapid dopamine signaling in the nucleus accumbens during contingent and noncontingent cocaine administration. Neuropsychopharmacology 30, 853–863 (2005).

    Article  CAS  Google Scholar 

  41. Cheer, J. F. et al. Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. J. Neurosci. 27, 791–795 (2007).

    Article  CAS  Google Scholar 

  42. Nirenberg, M. J. et al. The dopamine transporter: comparative ultrastructure of dopaminergic axons in limbic and motor compartments of the nucleus accumbens. J. Neurosci. 17, 6899–6907 (1997).

    Article  CAS  Google Scholar 

  43. Mateo, Y., Budygin, E. A., Morgan, D., Roberts, D. C. & Jones, S. R. Fast onset of dopamine uptake inhibition by intravenous cocaine. Eur. J. Neurosci. 20, 2838–2842 (2004).

    Article  Google Scholar 

  44. Wu, Q., Reith, M. E., Wightman, R. M., Kawagoe, K. T. & Garris, P. A. Determination of release and uptake parameters from electrically evoked dopamine dynamics measured by real-time voltammetry. J. Neurosci. Methods 112, 119–133 (2001).

    Article  CAS  Google Scholar 

  45. Schultz, W. Dopamine neurons and their role in reward mechanisms. Curr. Opin. Neurobiol. 7, 191–197 (1997).

    Article  CAS  Google Scholar 

  46. Aragona, B. J. et al. Regional specificity in the real-time development of phasic dopamine transmission patterns during acquisition of a cue-cocaine association in rats. Eur. J. Neurosci. 30, 1889–1899 (2009).

    Article  Google Scholar 

  47. Phillips, P. E., Stuber, G. D., Heien, M. L., Wightman, R. M. & Carelli, R. M. Subsecond dopamine release promotes cocaine seeking. Nature 422, 614–618 (2003).

    Article  CAS  Google Scholar 

  48. Stuber, G. D., Wightman, R. M. & Carelli, R. M. Extinction of cocaine self-administration reveals functionally and temporally distinct dopaminergic signals in the nucleus accumbens. Neuron 46, 661–669 (2005).

    Article  CAS  Google Scholar 

  49. Wise, R. A. Brain reward circuitry: insights from unsensed incentives. Neuron 36, 229–240 (2002).

    Article  CAS  Google Scholar 

  50. Schultz, W., Apicella, P. & Ljungberg, T. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J. Neurosci. 13, 900–913 (1993).

    Article  CAS  Google Scholar 

  51. Hyde, T. S. The effect of Pavlovian stimuli on the acquisition of a new response. Learn. Motiv. 7, 223–239 (1976).

    Article  Google Scholar 

  52. You, Z. B., Wang, B., Zitzman, D. & Wise, R. A. Acetylcholine release in the mesocorticolimbic dopamine system during cocaine seeking: conditioned and unconditioned contributions to reward and motivation. J. Neurosci. 28, 9021–9029 (2008).

    Article  CAS  Google Scholar 

  53. Legault, M. & Wise, R. A. Injections of N-methyl-D-aspartate into the ventral hippocampus increase extracellular dopamine in the ventral tegmental area and nucleus accumbens. Synapse 31, 241–249 (1999).

    Article  CAS  Google Scholar 

  54. Legault, M. & Wise, R. A. Novelty-evoked elevations of nucleus accumbens dopamine: dependence on impulse flow from the ventral subiculum and glutamatergic neurotransmission in the ventral tegmental area. Eur. J. Neurosci. 13, 819–828 (2001).

    Article  CAS  Google Scholar 

  55. Wang, B. et al. Cocaine experience establishes control of midbrain glutamate and dopamine by corticotropin-releasing factor: a role in stress-induced relapse to drug seeking. J. Neurosci. 25, 5389–5396 (2005).

    Article  CAS  Google Scholar 

  56. Kiyatkin, E. A. & Brown, P. L. I.v. cocaine induces rapid, transient excitation of striatal neurons via its action on peripheral neural elements: single-cell, iontophoretic study in awake and anesthetized rats. Neuroscience 148, 978–995 (2007).

    Article  CAS  Google Scholar 

  57. Norman, A. B. et al. The effect of a chimeric human/murine anti-cocaine monoclonal antibody on cocaine self-administration in rats. J. Pharmacol. Exp. Ther. 328, 873–881 (2009).

    Article  CAS  Google Scholar 

  58. Martell, B. A. et al. Cocaine vaccine for the treatment of cocaine dependence in methadone-maintained patients: a randomized, double-blind, placebo-controlled efficacy trial. Arch. Gen. Psychiatry 66, 1116–1123 (2009).

    Article  CAS  Google Scholar 

  59. Haney, M., Gunderson, E. W., Jiang, H., Collins, E. D. & Foltin, R. W. Cocaine-specific antibodies blunt the subjective effects of smoked cocaine in humans. Biol. Psychiatry 67, 59–65 (2010).

    Article  CAS  Google Scholar 

  60. McDonald, R. V. & Siegel, S. Intra-administration associations and withdrawal symptoms: morphine-elicited morphine wihtdrawal. Exp. Clin. Psychopharmacol. 12, 3–11 (2004).

    Article  CAS  Google Scholar 

  61. Rose, J. E. et al. Kinetics of brain nicotine accumulation in dependent and nondependent smokers assessed with PET and cigarettes containing 11C-nicotine. Proc. Natl Acad. Sci. USA 107, 5190–5195 (2010).

    Article  CAS  Google Scholar 

  62. Carlsson, A., Fuxe, K., Hamberger, B. & Lindqvist, M. Biochemical and histochemical studies on the effects of imipramine-like drugs and (+)-amphetamine on central and peripheral catecholamine neurons. Acta Physiol. Scand. 67, 481–497 (1966).

    Article  CAS  Google Scholar 

  63. Hull, C. L. Principles of Behavior (Appleton-Century-Crofts, New York, 1943).

    Google Scholar 

  64. Myerson, J. & Green, L. Discounting of delayed rewards; models of individual choice. J. Exp. Anal. Behav. 64, 263–276 (1995).

    Article  CAS  Google Scholar 

  65. Samuelson, P. A. A note on measurement of utility. Rev. Econ. Stud. 4, 155–161 (1937).

    Article  Google Scholar 

  66. Grice, G. R. An experimental study of the gradient of reinforcement in maze learning. J. Exp. Psychol. 30, 475–489 (1942).

    Article  Google Scholar 

  67. Oldendorf, W. H., Hyman, S., Braun, L. & Oldendorf, S. Z. Blood–brain barrier: Penetration of morphine, codeine, heroin, and methadone after carotid injection. Science 178, 984–986 (1972).

    Article  CAS  Google Scholar 

  68. Benowitz, N. L. Pharmacology of nicotine: addiction and therapeutics. Annu. Rev. Pharmacol. Toxicol. 36, 597–613 (1996).

    Article  CAS  Google Scholar 

  69. Byck, R., Van Dyke, C., Jatlow, P. & Barash, P. in Cocaine 1980 (ed. Jeri, F. R.) 250–256 (Pacific Press, Lima, 1980).

    Google Scholar 

  70. Kissinger, P. T., Hart, J. B. & Adams, R. N. Voltammetry in brain tissue — a new neurophysiological measurement. Brain Res. 55, 209–213 (1973).

    Article  CAS  Google Scholar 

  71. Heien, M. L. et al. Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proc. Natl Acad. Sci. USA 102, 10023–10028 (2005).

    Article  CAS  Google Scholar 

  72. Weeks, J. R. Experimental morphine addiction: method for automatic intravenous injections in unrestrained rats. Science 138, 143–144 (1962).

    Article  CAS  Google Scholar 

  73. Crombag, H. S., Ferrario, C. R. & Robinson, T. E. The rate of intravenous cocaine or amphetamine delivery does not influence drug-taking and drug-seeking behavior in rats. Pharmacol. Biochem. Behav. 90, 797–804 (2008).

    Article  CAS  Google Scholar 

  74. Sorge, R. E. & Clarke, P. B. Rats self-administer intravenous nicotine delivered in a novel smoking-relevant procedure: effects of dopamine antagonists. J. Pharmacol. Exp. Ther. 330, 633–640 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Preparation of this manuscript was supported by the US National Institute on Drug Abuse (NIDA) Intramural Research Program. The authors would like to thank S. Steidl and K. Cardiff for comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy A. Wise.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Roy A. Wise's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wise, R., Kiyatkin, E. Differentiating the rapid actions of cocaine. Nat Rev Neurosci 12, 479–484 (2011). https://doi.org/10.1038/nrn3043

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3043

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing