Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Maintaining and reprogramming genomic androgen receptor activity in prostate cancer

A Corrigendum to this article was published on 20 March 2014

This article has been updated

Abstract

Prostate cancer treatment is dominated by strategies to control androgen receptor (AR) activity. AR has an impact on prostate cancer development through the regulation of not only transcription networks but also genomic stability and DNA repair, as manifest in the emergence of gene fusions. Whole-genome maps of AR binding sites and transcript profiling have shown changes in the recruitment and regulatory effect of AR on transcription as prostate cancer progresses. Defining other factors that are involved in this reprogramming of AR function gives various opportunities for cancer detection and therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Androgen receptor activity reflects autocrine and paracrine signalling, copy number amplification and signalling crosstalk.
Figure 2: Interactions between androgen receptor and other transcription factors change androgen receptor recruitment to DNA, as well as the expression and sets of genes associated with biological pathways.
Figure 3: Chromatin readers and modifying enzymes alter the chromatin landscape to change androgen receptor binding to DNA.
Figure 4: Defining the sequence of androgen receptor reprogramming events alongside clinical prostate cancer progression is now the challenge and will further advance personalized medicine.

Similar content being viewed by others

Change history

  • 20 March 2014

    In the original version of this article, several references were incorrect. References 13, 29, 34, 41, 88, 89, 90 and 91 were incorrect and have now been replaced with the correct citations. In addition, reference 59 was incorrectly cited in the first sentence of the "Speckle-type POZ protein (SPOP)" subsection at the top of page 195, and this has now been removed. All of these corrections have been made online.

References

  1. Huggins, C. Effect of orchiectomy and irradiation on cancer of the prostate. Ann. Surg. 115, 1192–1200 (1942).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mulder, E., Vrij, A. A. & Brinkmann, A. O. DNA and ribonucleotide binding characteristics of two forms of the androgen receptor from rat prostates. Biochem. Biophys. Res. Commun. 114, 1147–1153 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. McEwan, I. J. Molecular mechanisms of androgen receptor-mediated gene regulation: structure-function analysis of the AF-1 domain. Endocr.-Related Cancer 11, 281–293 (2004).

    Article  CAS  Google Scholar 

  4. Cutress, M. L., Whitaker, H. C., Mills, I. G., Stewart, M. & Neal, D. E. Structural basis for the nuclear import of the human androgen receptor. J. Cell Sci. 121, 957–968 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Yuan, X., Cai, C., Chen, S., Yu, Z. & Balk, S. P. Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene http://dx.doi.org/10.1038/onc.2013.235 (2013).

  6. Ryan, C. J. et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. New Engl. J. Med. 368, 138–148 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Scher, H. I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. New Engl. J. Med. 367, 1187–1197 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Visakorpi, T. et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nature Genet. 9, 401–406 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Li, Y. et al. Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res. 73, 483–489 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Balbas, M. D. et al. Overcoming mutation-based resistance to antiandrogens with rational drug design. eLife 2, e00499 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Urbanucci, A. et al. Overexpression of androgen receptor enhances the binding of the receptor to the chromatin in prostate cancer. Oncogene 31, 2153–2163 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, Q. et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138, 245–256 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, J., Yu, J. Interrogating genomic and epigenomic data to understand prostate cancer. Biochim. Biophys. Acta 1825, 186–196 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Massie, C. E. & Mills, I. G. Mapping protein-DNA interactions using ChIP-sequencing. Methods Mol. Biol. 809, 157–173 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Lin, B. et al. Integrated expression profiling and ChIP-seq analyses of the growth inhibition response program of the androgen receptor. PLoS ONE 4, e6589 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu, J. et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17, 443–454 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sharma, N. L. et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell 23, 35–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Massie, C. E. et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 30, 2719–2733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Costello, L. C. & Franklin, R. B. Testosterone and prolactin regulation of metabolic genes and citrate metabolism of prostate epithelial cells. Hormone Metabol. Res. 34, 417–424 (2002).

    Article  CAS  Google Scholar 

  20. Haffner, M. C. et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nature Genet. 42, 668–675 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Ju, B. G. et al. A topoisomerase IIβ-mediated dsDNA break required for regulated transcription. Science 312, 1798–1802 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Haffner, M. C., De Marzo, A. M., Meeker, A. K., Nelson, W. G. & Yegnasubramanian, S. Transcription-induced DNA double strand breaks: both oncogenic force and potential therapeutic target? Clin. Cancer Res. 17, 3858–3864 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Langelier, M. F. & Pascal, J. M. PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis. Curr. Opin. Struct. Biol. 23, 134–143 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schiewer, M. J. et al. Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov. 2, 1134–1149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brenner, J. C. et al. Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 19, 664–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Mani, R. S. et al. Induced chromosomal proximity and gene fusions in prostate cancer. Science 326, 1230 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Weischenfeldt, J. et al. Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer. Cancer Cell 23, 159–170 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Hessels, D. & Schalken, J. A. Recurrent gene fusions in prostate cancer: their clinical implications and uses. Curr. Urol. Rep. 14, 214–222 (2013).

    Article  PubMed  Google Scholar 

  30. Spans, L. et al. The genomic landscape of prostate cancer. Int. J. Mol. Sci. 14, 10822–10851 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baena, E. et al. ETV1 directs androgen metabolism and confers aggressive prostate cancer in targeted mice and patients. Genes Dev. 27, 683–698 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carver, B. S. et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nature Genet. 41, 619–624 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Massie, C. E. et al. New androgen receptor genomic targets show an interaction with the ETS1 transcription factor. EMBO Rep. 8, 871–878 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tomlins, S. A. et al. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 10, 177–188 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Paulo, P. et al. Molecular subtyping of primary prostate cancer reveals specific and shared target genes of different ETS rearrangements. Neoplasia 14, 600–611 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yuan, W. et al. H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J. Biol. Chem. 286, 7983–7989 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cha, T. L. et al. Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 310, 306–310 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. & Thompson, C. B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell. Metabolism 7, 11–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Eichholz, A., Ferraldeschi, R., Attard, G. & de Bono, J. S. Putting the brakes on continued androgen receptor signaling in castration-resistant prostate cancer. Mol. Cell. Endocrinol. 360, 68–75 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Carver, B. S. et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 19, 575–586 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kaestner, K. H. The FoxA factors in organogenesis and differentiation. Curr. Opin. Genet. Dev. 20, 527–532 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shah, S., Prasad, S. & Knudsen, K. E. Targeting pioneering factor and hormone receptor cooperative pathways to suppress tumor progression. Cancer Res. 72, 1248–1259 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carroll, J. S. et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122, 33–43 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Hurtado, A., Holmes, K. A., Ross-Innes, C. S., Schmidt, D. & Carroll, J. S. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nature Genet. 43, 27–33 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Sahu, B. et al. Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO J. 30, 3962–3976 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, D. et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474, 390–394 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Grasso, C. S. et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487, 239–243 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, Q. et al. A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol. Cell 27, 380–392 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bohm, M., Locke, W. J., Sutherland, R. L., Kench, J. G. & Henshall, S. M. A role for GATA-2 in transition to an aggressive phenotype in prostate cancer through modulation of key androgen-regulated genes. Oncogene 28, 3847–3856 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Andreu-Vieyra, C. et al. Dynamic nucleosome-depleted regions at androgen receptor enhancers in the absence of ligand in prostate cancer cells. Mol. Cell. Biol. 31, 4648–4662 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Clinckemalie, L. et al. Androgen regulation of the TMPRSS2 gene and the effect of a SNP in an androgen response element. Mol. Endocrinol. http://dx.doi.org/10.1210/me.2013-1098 (2013).

  52. Bambury, R. M. & Gallagher, D. J. Prostate cancer: germline prediction for a commonly variable malignancy. BJU Int. 110, E809–E818 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Karlsson, R. et al. A population-based assessment of germline HOXB13 G84E mutation and prostate cancer risk. Eur. Urol. 65, 169–176 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Laitinen, V. H. et al. HOXB13 G84E mutation in Finland: population-based analysis of prostate, breast, and colorectal cancer risk. Cancer Epidemiol. Biomarkers Prev. 22, 452–460 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Norris, J. D. et al. The homeodomain protein HOXB13 regulates the cellular response to androgens. Mol. Cell 36, 405–416 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. De Vita, F. et al. Interleukin-6 serum level correlates with survival in advanced gastrointestinal cancer patients but is not an independent prognostic indicator. J. Interferon Cytokine Res. 21, 45–52 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Uehara, H. et al. Expression of interleukin-8 gene in radical prostatectomy specimens is associated with advanced pathologic stage. Prostate 64, 40–49 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Araki, S. et al. Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer. Cancer Res. 67, 6854–6862 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Suh, J. & Rabson, A. B. NF-κB activation in human prostate cancer: important mediator or epiphenomenon? J. Cell. Biochem. 91, 100–117 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Heinrich, P. C. et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374, 1–20 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ammirante, M., Luo, J. L., Grivennikov, S., Nedospasov, S. & Karin, M. B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464, 302–305 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nadiminty, N. et al. Aberrant activation of the androgen receptor by NF-κB2/p52 in prostate cancer cells. Cancer Res. 70, 3309–3319 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McCall, P. et al. NFκB signalling is upregulated in a subset of castrate-resistant prostate cancer patients and correlates with disease progression. Br. J. Cancer 107, 1554–1563 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wilson, C., Wilson, T., Johnston, P. G., Longley, D. B. & Waugh, D. J. Interleukin-8 signaling attenuates TRAIL- and chemotherapy-induced apoptosis through transcriptional regulation of c-FLIP in prostate cancer cells. Mol. Cancer Ther. 7, 2649–2661 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Maxwell, P. J. et al. Potentiation of inflammatory CXCL8 signalling sustains cell survival in PTEN-deficient prostate carcinoma. Eur. Urol. 64, 177–188 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Fang, L. Y. et al. Infiltrating macrophages promote prostate tumorigenesis via modulating androgen receptor-mediated CCL4-STAT3 signaling. Cancer Res. 73, 5633–5646 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Tan, S. H. et al. Transcription factor Stat5 synergizes with androgen receptor in prostate cancer cells. Cancer Res. 68, 236–248 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Horinaga, M. et al. Clinical and pathologic significance of activation of signal transducer and activator of transcription 3 in prostate cancer. Urology 66, 671–675 (2005).

    Article  PubMed  Google Scholar 

  69. Thomas, C. et al. Transcription factor Stat5 knockdown enhances androgen receptor degradation and delays castration-resistant prostate cancer progression in vivo. Mol. Cancer Ther. 10, 347–359 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Liao, Z. & Nevalainen, M. T. Targeting transcription factor Stat5a/b as a therapeutic strategy for prostate cancer. Am. J. Translat. Res. 3, 133–138 (2011).

    CAS  Google Scholar 

  71. Ueda, T., Bruchovsky, N. & Sadar, M. D. Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J. Biol. Chem. 277, 7076–7085 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Ribeiro, F. R., Henrique, R., Martins, A. T., Jeronimo, C. & Teixeira, M. R. Relative copy number gain of MYC in diagnostic needle biopsies is an independent prognostic factor for prostate cancer patients. Eur. Urol. 52, 116–125 (2007).

    Article  PubMed  Google Scholar 

  73. Antonarakis, E. S. et al. An immunohistochemical signature comprising PTEN, MYC, and Ki67 predicts progression in prostate cancer patients receiving adjuvant docetaxel after prostatectomy. Cancer 118, 6063–6071 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Lin, C. Y. et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151, 56–67 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zou, J. X. et al. Androgen-induced coactivator ANCCA mediates specific androgen receptor signaling in prostate cancer. Cancer Res. 69, 3339–3346 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Ciro, M. et al. ATAD2 is a novel cofactor for MYC, overexpressed and amplified in aggressive tumors. Cancer Res. 69, 8491–8498 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Jang, M. K. et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19, 523–534 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Chase, A. & Cross, N. C. Aberrations of EZH2 in cancer. Clin. Cancer Res. 17, 2613–2618 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Varambally, S. et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322, 1695–1699 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xu, K. et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 338, 1465–1469 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Crea, F. et al. EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis. Cancer Metastasis Rev. 31, 753–761 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Kuo, A. J. et al. NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol. Cell 44, 609–620 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Asangani, I. A. et al. Characterization of the EZH2-MMSET histone methyltransferase regulatory axis in cancer. Mol. Cell 49, 80–93 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Qi, J. et al. The E3 ubiquitin ligase Siah2 contributes to castration-resistant prostate cancer by regulation of androgen receptor transcriptional activity. Cancer Cell 23, 332–346 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Qi, J. et al. Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors. Cancer Cell 18, 23–38 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ahmad, I., Sansom, O. J. & Leung, H. Y. The role of murine models of prostate cancer in drug target discovery and validation. Expert Opin. Drug Discov. 4, 879–888 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Qi, J., Pellecchia, M. & Ronai, Z. A. The Siah2-HIF-FoxA2 axis in prostate cancer — new markers and therapeutic opportunities. Oncotarget 1, 379–385 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Li, C. et al. Tumor-suppressor role for the SPOP ubiquitin ligase in signal-dependent proteolysis of the oncogenic co-activator SRC-3/AIB1. Oncogene 30, 4350–4364 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhou, H. J. et al. SRC-3 is required for prostate cancer cell proliferation and survival. Cancer Res. 65, 7976–7983 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Barbieri, C. E. et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nature Genet. 44, 685–689 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Geng, C. et al. Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Proc. Natl Acad. Sci. USA 110, 6997–7002 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Denmeade, S. R. & Isaacs, J. T. Bipolar androgen therapy: the rationale for rapid cycling of supraphysiologic androgen/ablation in men with castration resistant prostate cancer. Prostate 70, 1600–1607 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. McDermott, J. E., Costa, M., Janszen, D., Singhal, M. & Tilton, S. C. Separating the drivers from the driven: Integrative network and pathway approaches aid identification of disease biomarkers from high-throughput data. Dis. Markers 28, 253–266 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schmid, E. M. & McMahon, H. T. Integrating molecular and network biology to decode endocytosis. Nature 448, 883–888 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Rhee, H. S. & Pugh, B. F. ChIP-exo method for identifying genomic location of DNA-binding proteins with near-single-nucleotide accuracy. In Current Protocols in Molecular Biology Ch. 21, Unit 21.24 (eds Frederick M. A. et al.) (Wiley, 2012).

    Google Scholar 

  96. Shankaranarayanan, P. et al. Single-tube linear DNA amplification (LinDA) for robust ChIP-seq. Nature Methods 8, 565–567 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Zwart, W. et al. A carrier-assisted ChIP-seq method for estrogen receptor-chromatin interactions from breast cancer core needle biopsy samples. BMC Genom. 14, 232 (2013).

    Article  CAS  Google Scholar 

  98. Mohammed, H. et al. Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor. Cell Rep. 3, 342–349 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rubin, M. A. & Chinnaiyan, A. M. Bioinformatics approach leads to the discovery of the TMPRSS2:ETS gene fusion in prostate cancer. Lab. Invest. 86, 1099–1102 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Liu, X., Wang, J. & Chen, L. Whole-exome sequencing reveals recurrent somatic mutation networks in cancer. Cancer Lett. 340, 270–276 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Chugh, P. & Dittmer, D. P. Potential pitfalls in microRNA profiling. Wiley Interdiscip. Rev. RNA 3, 601–616 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhou, X. et al. Progress in concurrent analysis of loss of heterozygosity and comparative genomic hybridization utilizing high density single nucleotide polymorphism arrays. Cancer Genet. Cytogenet. 159, 53–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Costa, J. L., Meijer, G., Ylstra, B. & Caldas, C. Array comparative genomic hybridization copy number profiling: a new tool for translational research in solid malignancies. Semin. Radiat. Oncol. 18, 98–104 (2008).

    Article  PubMed  Google Scholar 

  104. Ni, M. et al. Amplitude modulation of androgen signaling by c-MYC. Genes Dev. 27, 734–748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gao, L. et al. Androgen receptor promotes ligand-independent prostate cancer progression through c-Myc upregulation. PLoS One 8, e63563 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Cao, Q. et al. Coordinated regulation of polycomb group complexes through microRNAs in cancer. Cancer Cell 20, 187–199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ezponda, T. et al. The histone methyltransferase MMSET/WHSC1 activates TWIST1 to promote an epithelial-mesenchymal transition and invasive properties of prostate cancer. Oncogene 32, 2882–2890 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Yang, P. et al. Histone methyltransferase NSD2/MMSET mediates constitutive NF-κB signaling for cancer cell proliferation, survival, and tumor growth via a feed-forward loop. Mol. Cell. Biol. 32, 3121–3131 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jin, H. J., Zhao, J. C., Ogden, I., Bergan, R. C. & Yu, J. Androgen receptor-independent function of FoxA1 in prostate cancer metastasis. Cancer Res. 73, 3725–3736 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Naderi, A., Meyer, M. & Dowhan, D. H. Cross-regulation between FOXA1 and ErbB2 signaling in estrogen receptor-negative breast cancer. Neoplasia 14, 283–296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Naderi, A. & Hughes-Davies, L. A functionally significant cross-talk between androgen receptor and ErbB2 pathways in estrogen receptor negative breast cancer. Neoplasia 10, 542–548 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Barbieri, C. E. et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nature Genet. 44, 685–689 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Kim, Y. R. et al. HOXB13 promotes androgen independent growth of LNCaP prostate cancer cells by the activation of E2F signaling. Mol. Cancer 9, 124 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang, L. et al. NF-κB regulates androgen receptor expression and prostate cancer growth. Am. J. Pathol. 175, 489–499 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lessard, L., Begin, L. R., Gleave, M. E., Mes-Masson, A. M. & Saad, F. Nuclear localisation of nuclear factor-κB transcription factors in prostate cancer: an immunohistochemical study. Br. J. Cancer 93, 1019–1023 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank members of the Mills laboratory for their critical reading of the manuscript. The manuscript has evolved from discussions with many close colleagues within the field, particularly D. Neal, N. Sharma, C. Massie, H. Itkonen, S. Barfeld, A. Urbanucci, P. Rennie and G. Coetzee, and many more. Research within the Mills laboratory is funded by the Movember Foundation, the US National Institutes of Health, Helse Sør-Øst, Norway, the Norwegian Research Council, the Norwegian Cancer Society, the Finnish Cultural Society and the European Union. The author would like to apologize to all colleagues whose work he was unable to cite in this Opinion article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian G. Mills.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mills, I. Maintaining and reprogramming genomic androgen receptor activity in prostate cancer. Nat Rev Cancer 14, 187–198 (2014). https://doi.org/10.1038/nrc3678

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3678

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer