Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Generation and customization of biosynthetic excitable tissues for electrophysiological studies and cell-based therapies

Abstract

We describe a two-stage protocol to generate electrically excitable and actively conducting cell networks with stable and customizable electrophysiological phenotypes. Using this method, we have engineered monoclonally derived excitable tissues as a robust and reproducible platform to investigate how specific ion channels and mutations affect action potential (AP) shape and conduction. In the first stage of the protocol, we combine computational modeling, site-directed mutagenesis, and electrophysiological techniques to derive optimal sets of mammalian and/or prokaryotic ion channels that produce specific AP shape and conduction characteristics. In the second stage of the protocol, selected ion channels are stably expressed in unexcitable human cells by means of viral or nonviral delivery, followed by flow cytometry or antibiotic selection to purify the desired phenotype. This protocol can be used with traditional heterologous expression systems or primary excitable cells, and application of this method to primary fibroblasts may enable an alternative approach to cardiac cell therapy. Compared with existing methods, this protocol generates a well-defined, relatively homogeneous electrophysiological phenotype of excitable cells that facilitates experimental and computational studies of AP conduction and can decrease arrhythmogenic risk upon cell transplantation. Although basic cell culture and molecular biology techniques are sufficient to generate excitable tissues using the described protocol, experience with patch-clamp techniques is required to characterize and optimize derived cell populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the protocol.
Figure 2: Screening of AP propagation in Kir2.
Figure 3: Example of using hERG expression to vary the AP duration.
Figure 4: Stepwise procedures for the generation of monoclonal Ex-293 line and E-HDFs (Step 24).
Figure 5: Characterization of electrical coupling in engineered cells (Step 25C–E).
Figure 6: Characterization of ion currents and APs in engineered cells (Step 25A).
Figure 7: Characterization of AP propagation in engineered cells (Step 25B) and fine-tuning of conduction velocity with FACS.

Similar content being viewed by others

References

  1. Sallam, K., Li, Y., Sager, P.T., Houser, S.R. & Wu, J.C. Finding the rhythm of sudden cardiac death: new opportunities using induced pluripotent stem cell-derived cardiomyocytes. Circ. Res. 116, 1989–2004 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Itzhaki, I. et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471, 225–229 (2011).

    CAS  PubMed  Google Scholar 

  3. Yazawa, M. et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471, 230–234 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chong, J.J. et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510, 273–277 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Shiba, Y. et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538, 388–391 (2016).

    CAS  PubMed  Google Scholar 

  6. Yankelson, L. et al. Cell therapy for modification of the myocardial electrophysiological substrate. Circulation 117, 720–731 (2008).

    PubMed  Google Scholar 

  7. Klinger, R. & Bursac, N. Cardiac cell therapy in vitro: reproducible assays for comparing the efficacy of different donor cells. IEEE Eng. Med. Biol. Mag. 27, 72–80 (2008).

    PubMed  PubMed Central  Google Scholar 

  8. Gaudesius, G., Miragoli, M., Thomas, S.P. & Rohr, S. Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circ. Res. 93, 421–428 (2003).

    CAS  PubMed  Google Scholar 

  9. Abraham, M.R. et al. Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ. Res. 97, 159–167 (2005).

    CAS  PubMed  Google Scholar 

  10. Roell, W. et al. Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature 450, 819–824 (2007).

    CAS  PubMed  Google Scholar 

  11. Iyer, V., Mazhari, R. & Winslow, R.L. A computational model of the human left-ventricular epicardial myocyte. Biophys. J. 87, 1507–1525 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kleber, A.G. & Rudy, Y. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol. Rev. 84, 431–488 (2004).

    CAS  PubMed  Google Scholar 

  13. Nerbonne, J.M. & Kass, R.S. Molecular physiology of cardiac repolarization. Physiol. Rev. 85, 1205–1253 (2005).

    CAS  PubMed  Google Scholar 

  14. Grant, A.O. Cardiac ion channels. Circ. Arrhythm. Electrophysiol. 2, 185–194 (2009).

    PubMed  Google Scholar 

  15. Noble, D. A modification of the Hodgkin--Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J. Physiol. 160, 317–352 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fenton, F. & Karma, A. Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation. Chaos 8, 20–47 (1998).

    PubMed  Google Scholar 

  17. Fenton, F.H., Cherry, E.M., Hastings, H.M. & Evans, S.J. Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. Chaos 12, 852–892 (2002).

    PubMed  Google Scholar 

  18. Bueno-Orovio, A., Cherry, E.M. & Fenton, F.H. Minimal model for human ventricular action potentials in tissue. J. Theor. Biol. 253, 544–560 (2008).

    PubMed  Google Scholar 

  19. Kirkton, R.D. & Bursac, N. Engineering biosynthetic excitable tissues from unexcitable cells for electrophysiological and cell therapy studies. Nat. Commun. 2, 300 (2011).

    PubMed  Google Scholar 

  20. Kirkton, R.D. & Bursac, N. Genetic engineering of somatic cells to study and improve cardiac function. Europace 14 (Suppl. 5), v40–v49 (2012).

    PubMed  PubMed Central  Google Scholar 

  21. Kirkton, R.D., Badie, N. & Bursac, N. Spatial profiles of electrical mismatch determine vulnerability to conduction failure across a host-donor cell interface. Circ. Arrhythm. Electrophysiol. 6, 1200–1207 (2013).

    PubMed  Google Scholar 

  22. Gokhale, T.A., Kim, J.M., Kirkton, R.D., Bursac, N. & Henriquez, C.S. Modeling an excitable biosynthetic tissue with inherent variability for paired computational-experimental studies. PLoS Comput. Biol. 13, e1005342 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. Ren, D. et al. A prokaryotic voltage-gated sodium channel. Science 294, 2372–2375 (2001).

    CAS  PubMed  Google Scholar 

  24. Koishi, R. et al. A superfamily of voltage-gated sodium channels in bacteria. J. Biol. Chem. 279, 9532–9538 (2004).

    CAS  PubMed  Google Scholar 

  25. Irie, K. et al. Comparative study of the gating motif and C-type inactivation in prokaryotic voltage-gated sodium channels. J. Biol. Chem. 285, 3685–3694 (2010).

    CAS  PubMed  Google Scholar 

  26. Nguyen, H.X., Kirkton, R.D. & Bursac, N. Engineering prokaryotic channels for control of mammalian tissue excitability. Nat. Commun. 7, 13132 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ashcroft, F.M. From molecule to malady. Nature 440, 440–447 (2006).

    CAS  PubMed  Google Scholar 

  28. Tan, H.L. et al. A sodium-channel mutation causes isolated cardiac conduction disease. Nature 409, 1043–1047 (2001).

    CAS  PubMed  Google Scholar 

  29. Barela, A.J. et al. An epilepsy mutation in the sodium channel SCN1A that decreases channel excitability. J. Neurosci. 26, 2714–2723 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, Z.S., Tranquillo, J., Neplioueva, V., Bursac, N. & Grant, A.O. Sodium channel kinetic changes that produce Brugada syndrome or progressive cardiac conduction system disease. Am. J. Physiol. Heart Circ. Physiol. 292, H399–H407 (2007).

    CAS  PubMed  Google Scholar 

  31. Hou, L., Hu, B. & Jalife, J. Genetically engineered excitable cardiac myofibroblasts coupled to cardiomyocytes rescue normal propagation and reduce arrhythmia complexity in heterocellular monolayers. PLoS One 8, e55400 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Park, J. et al. Screening fluorescent voltage indicators with spontaneously spiking HEK cells. PLoS One 8, e85221 (2013).

    PubMed  PubMed Central  Google Scholar 

  33. McNamara, H.M., Zhang, H., Werley, C.A. & Cohen, A.E. Optically controlled oscillators in an engineered bioelectric tissue. Phys. Rev. X 6, 031001 (2016).

    Google Scholar 

  34. Zhang, H., Reichert, E. & Cohen, A.E. Optical electrophysiology for probingfunction and pharmacology of voltage-gated ion channels. Elife 5, e15202 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. Xie, M. et al. Beta-cell-mimetic designer cells provide closed-loop glycemic control. Science 354, 1296–1301 (2016).

    CAS  PubMed  Google Scholar 

  36. Isom, L.L., De Jongh, K.S. & Catterall, W.A. Auxiliary subunits of voltage-gated ion channels. Neuron 12, 1183–1194 (1994).

    CAS  PubMed  Google Scholar 

  37. Abriel, H. Cardiac sodium channel Na(v)1.5 and interacting proteins: physiology and pathophysiology. J. Mol. Cell Cardiol. 48, 2–11 (2010).

    CAS  PubMed  Google Scholar 

  38. Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, D. et al. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum. Gene Ther. 26, 432–442 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Doroudchi, M.M. et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol. Ther. 19, 1220–1229 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Han, X. et al. Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62, 191–198 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sim, S., Antolin, S., Lin, C.W., Lin, Y. & Lois, C. Increased cell-intrinsic excitability induces synaptic changes in new neurons in the adult dentate gyrus that require Npas4. J. Neurosci. 33, 7928–7940 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Graham, F.L., Smiley, J., Russell, W.C. & Nairn, R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–74 (1977).

    CAS  PubMed  Google Scholar 

  44. Shaw, G., Morse, S., Ararat, M. & Graham, F.L. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J. 16, 869–871 (2002).

    CAS  PubMed  Google Scholar 

  45. Varghese, A., Tenbroek, E.M., Coles, J., Jr. & Sigg, D.C. Endogenous channels in HEK cells and potential roles in HCN ionic current measurements. Prog. Biophys. Mol. Biol. 90, 26–37 (2006).

    CAS  PubMed  Google Scholar 

  46. Jiang, B., Sun, X., Cao, K. & Wang, R. Endogenous Kv channels in human embryonic kidney (HEK-293) cells. Mol. Cell Biochem. 238, 69–79 (2002).

    CAS  PubMed  Google Scholar 

  47. Tong, J., Du, G.G., Chen, S.R. & MacLennan, D.H. HEK-293 cells possess a carbachol- and thapsigargin-sensitive intracellular Ca2+ store that is responsive to stop-flow medium changes and insensitive to caffeine and ryanodine. Biochem. J. 343 (Pt 1): 39–44 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Berjukow, S. et al. Endogenous calcium channels in human embryonic kidney (HEK293) cells. Br. J. Pharmacol. 118, 748–754 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Thomas, P. & Smart, T. G. HEK293 cell line: a vehicle for the expression of recombinant proteins. J. Pharmacol. Toxicol. Methods 51, 187–200 (2005).

    CAS  PubMed  Google Scholar 

  50. Xu, X. et al. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat. Biotechnol. 29, 735–741 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Scherer, W.F., Syverton, J.T. & Gey, G.O. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J. Exp. Med. 97, 695–710 (1953).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Estacion, M. Characterization of ion channels seen in subconfluent human dermal fibroblasts. J. Physiol. 436, 579–601 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  PubMed  Google Scholar 

  54. Lowry, W.E. et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl. Acad. Sci. USA 105, 2883–2888 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Vien, T.N. & DeCaen, P.G. Biophysical adaptations of prokaryotic voltage-gated sodium channels. Curr. Top Membr. 78, 39–64 (2016).

    CAS  PubMed  Google Scholar 

  56. Trudeau, M.C., Warmke, J.W., Ganetzky, B. & Robertson, G.A. HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269, 92–95 (1995).

    CAS  PubMed  Google Scholar 

  57. Yue, L., Feng, J., Li, G.R. & Nattel, S. Characterization of an ultrarapid delayed rectifier potassium channel involved in canine atrial repolarization. J. Physiol. 496 (Pt 3): 647–662 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ravens, U. & Wettwer, E. Ultra-rapid delayed rectifier channels: molecular basis and therapeutic implications. Cardiovasc. Res. 89, 776–785 (2011).

    CAS  PubMed  Google Scholar 

  59. Ivics, Z., Hackett, P.B., Plasterk, R.H. & Izsvak, Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–510 (1997).

    CAS  PubMed  Google Scholar 

  60. Mates, L. et al. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat. Genet. 41, 753–761 (2009).

    CAS  PubMed  Google Scholar 

  61. Kowarz, E., Loscher, D. & Marschalek, R. Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines. Biotechnol. J. 10, 647–653 (2015).

    CAS  PubMed  Google Scholar 

  62. Hu, T., Fu, Q., Chen, P., Zhang, K. & Guo, D. Generation of a stable mammalian cell line for simultaneous expression of multiple genes by using 2A peptide-based lentiviral vector. Biotechnol. Lett. 31, 353–359 (2009).

    CAS  PubMed  Google Scholar 

  63. Kim, J.H. et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6, e18556 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Badie, N. & Bursac, N. Novel micropatterned cardiac cell cultures with realistic ventricular microstructure. Biophys. J. 96, 3873–3885 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Scull, J.A., McSpadden, L.C., Himel, H.D.t., Badie, N. & Bursac, N. Single-detector simultaneous optical mapping of V(m) and [Ca(2+)](i) in cardiac monolayers. Ann. Biomed. Eng. 40, 1006–1017 (2012).

    PubMed  Google Scholar 

  66. Badie, N., Scull, J.A., Klinger, R.Y., Krol, A. & Bursac, N. Conduction block in micropatterned cardiomyocyte cultures replicating the structure of ventricular cross-sections. Cardiovasc. Res. 93, 263–271 (2012).

    CAS  PubMed  Google Scholar 

  67. Nguyen, H., Badie, N., McSpadden, L., Pedrotty, D. & Bursac, N. in Cardiac tissue engineering. Vol. 1181 Methods in Molecular Biology (eds. Radisic, M. & Black Iii, L.D.) Ch. 21, 249–262 (Springer, 2014).

  68. Davie, J.T. et al. Dendritic patch-clamp recording. Nat. Protoc. 1, 1235–1247 (2006).

    CAS  PubMed  Google Scholar 

  69. Mortensen, M. & Smart, T.G. Single-channel recording of ligand-gated ion channels. Nat. Protoc. 2, 2826–2841 (2007).

    CAS  PubMed  Google Scholar 

  70. de Boer, T.P. et al. Inhibition of cardiomyocyte automaticity by electrotonic application of inward rectifier current from Kir2.1 expressing cells. Med. Biol. Eng. Comput. 44, 537–542 (2006).

    PubMed  Google Scholar 

  71. Nygren, A. et al. Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. Circ. Res. 82, 63–81 (1998).

    CAS  PubMed  Google Scholar 

  72. Hodgkin, A.L. & Huxley, A.F. Propagation of electrical signals along giant nerve fibers. Proc. R Soc. Lond. B Biol. Sci. 140, 177–183 (1952).

    CAS  PubMed  Google Scholar 

  73. Hodgkin, A.L. & Rushton, W.A. The electrical constants of a crustacean nerve fibre. Proc. R Soc. Med. 134, 444–479 (1946).

    CAS  PubMed  Google Scholar 

  74. Van Rijen, H.V., Wilders, R., Rook, M.B. & Jongsma, H.J. Dual patch clamp. Methods Mol. Biol. 154, 269–292 (2001).

    CAS  PubMed  Google Scholar 

  75. Veenstra, R.D. Voltage clamp limitations of dual whole-cell gap junction current and voltage recordings. I. Conductance measurements. Biophys. J. 80, 2231–2247 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. ten Tusscher, K.H., Noble, D., Noble, P.J. & Panfilov, A.V. A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286, H1573–H1589 (2004).

    CAS  PubMed  Google Scholar 

  77. Nguyen, H., Badie, N., McSpadden, L., Pedrotty, D. & Bursac, N. Quantifying electrical interactions between cardiomyocytes and other cells in micropatterned cell pairs. Methods Mol. Biol. 1181, 249–262 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M.R. Abraham (John Hopkins University) for Kir2.1 cDNA, A.O. Grant (Duke University) for Nav1.5 cDNA, and K. Irie (Kyoto University) for BacNav cDNA. This work was supported by predoctoral fellowships from the National Science Foundation and the American Heart Association to R.D.K. and H.X.N., respectively, as well as by research grants to N.B. from the American Heart Association (AHA 0530256N) and National Institutes of Health (HL106203, HL104326, HL083342, HL095069, HL104326, HL132389, HL126524, and HL126193).

Author information

Authors and Affiliations

Authors

Contributions

H.X.N., R.D.K., and N.B. jointly developed the protocol; H.X.N. and R.D.K. performed the experiments and generated the figures; and H.X.N. and N.B. co-wrote the manuscript.

Corresponding author

Correspondence to Nenad Bursac.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Data

AP simulation. (ZIP 1386 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H., Kirkton, R. & Bursac, N. Generation and customization of biosynthetic excitable tissues for electrophysiological studies and cell-based therapies. Nat Protoc 13, 927–945 (2018). https://doi.org/10.1038/nprot.2018.016

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2018.016

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research