Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

The ClusPro web server for protein–protein docking

Abstract

The ClusPro server (https://cluspro.org) is a widely used tool for protein–protein docking. The server provides a simple home page for basic use, requiring only two files in Protein Data Bank (PDB) format. However, ClusPro also offers a number of advanced options to modify the search; these include the removal of unstructured protein regions, application of attraction or repulsion, accounting for pairwise distance restraints, construction of homo-multimers, consideration of small-angle X-ray scattering (SAXS) data, and location of heparin-binding sites. Six different energy functions can be used, depending on the type of protein. Docking with each energy parameter set results in ten models defined by centers of highly populated clusters of low-energy docked structures. This protocol describes the use of the various options, the construction of auxiliary restraints files, the selection of the energy parameters, and the analysis of the results. Although the server is heavily used, runs are generally completed in <4 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Outline of the ClusPro algorithm.
Figure 2: Home screen of the ClusPro server.
Figure 3: Screen capture of the restraint file generator web tool used to prepare a JSON file.
Figure 4: Screen capture of the ClusPro Status page.
Figure 5: Screen capture of the ClusPro Results page for docking of the soybean trypsin inhibitor (ligand) to the porcine trypsin (receptor).
Figure 6: Screen capture of the ClusPro Results page showing model scores for the balanced coefficient set when docking the soybean trypsin inhibitor to porcine trypsin.
Figure 7: Visualization by PyMol of the structure at the center of the most populated cluster in docking the soybean trypsin inhibitor (ligand) to porcine trypsin (receptor).
Figure 8: Screen capture showing exploration of the results of running ClusPro in 'Others Mode'.
Figure 9: Screen capture of the PyMOL visualization of the results of running ClusPro in Antibody Mode.
Figure 10: Best models from docking the signal-transducing protein HPr (PDB ID 1POH) to the glucose-specific phosphocarrier protein E2A (PDB ID 1F3G) without and with restraints.
Figure 11: Docking of the E. coli PliG lysozyme inhibitor to the salmon goose-type lysozyme using SAXS data as restraints.
Figure 12: Constructing the dimer of the sugar aminotransferase AtmS13 from Actinomadura melliaura by homology modeling and multimer docking.
Figure 13: Docking of the heparin tetramer probe to the ligand-free structure of the basic fibroblast growth factor.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Ewing, R.M. et al. Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol. Syst. Biol. 3, 89 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Smith, G.R. & Sternberg, M.J. Prediction of protein-protein interactions by docking methods. Curr. Opin. Struct. Biol. 12, 28–35 (2002).

    Article  PubMed  Google Scholar 

  6. Halperin, I., Ma, B., Wolfson, H. & Nussinov, R. Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47, 409–443 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Ritchie, D.W. Recent progress and future directions in protein-protein docking. Curr. Protein Pept. Sci. 9, 1–15 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Vajda, S. & Kozakov, D. Convergence and combination of methods in protein-protein docking. Curr. Opin. Struct. Biol. 19, 164–170 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aloy, P., Ceulemans, H., Stark, A. & Russell, R.B. The relationship between sequence and interaction divergence in proteins. J. Mol. Biol. 332, 989–998 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Sinha, R., Kundrotas, P.J. & Vakser, I.A. Protein docking by the interface structure similarity: how much structure is needed? PLoS One 7, e31349 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Comeau, S.R., Gatchell, D.W., Vajda, S. & Camacho, C.J. ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Res. 32, W96–W99 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Comeau, S.R., Gatchell, D.W., Vajda, S. & Camacho, C.J. ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20, 45–50 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Comeau, S.R. et al. ClusPro: performance in CAPRI rounds 6-11 and the new server. Proteins 69, 781–785 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Kozakov, D. et al. Achieving reliability and high accuracy in automated protein docking: ClusPro, PIPER, SDU, and stability analysis in CAPRI rounds 13-19. Proteins 78, 3124–3130 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kozakov, D. et al. How good is automated protein docking? Proteins 81, 2159–2166 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kozakov, D., Brenke, R., Comeau, S.R. & Vajda, S. PIPER: an FFT-based protein docking program with pairwise potentials. Proteins 65, 392–406 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Katchalski-Katzir, E. et al. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci. USA 89, 2195–2199 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gabb, H.A., Jackson, R.M. & Sternberg, M.J.E. Modelling protein docking using shape complementarity, electrostatics and biochemical information. J. Mol. Biol. 272, 106–120 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Mandell, J.G. et al. Protein docking using continuum electrostatics and geometric fit. Protein Eng. 14, 105–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, R. & Weng, Z.P. Docking unbound proteins using shape complementarity, desolvation, and electrostatics. Proteins 47, 281–294 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Kozakov, D., Clodfelter, K.H., Vajda, S. & Camacho, C.J. Optimal clustering for detecting near-native conformations in protein docking. Biophys. J. 89, 867–875 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, R., Mintseris, J., Janin, J. & Weng, Z. A protein-protein docking benchmark. Proteins 52, 88–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Mintseris, J. et al. Protein-Protein Docking Benchmark 2.0: an update. Proteins 60, 214–216 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Hwang, H., Pierce, B., Mintseris, J., Janin, J. & Weng, Z. Protein-protein docking benchmark version 3.0. Proteins 73, 705–709 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hwang, H., Vreven, T., Janin, J. & Weng, Z. Protein-protein docking benchmark version 4.0. Proteins 78, 3111–3114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vajda, S. & Camacho, C.J. Protein-protein docking: is the glass half-full or half-empty? Trends Biotechnol. 22, 110–116 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Vajda, S. Classification of protein complexes based on docking difficulty. Proteins 60, 176–180 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Yershova, A., Jain, S., LaValle, S.M. & Mitchell, J.C. Generating uniform incremental grids on SO(3) using the Hopf Fibration. Int. J. Robot. Res. 29, 801–812 (2010).

    Article  Google Scholar 

  29. Chuang, G.Y., Kozakov, D., Brenke, R., Comeau, S.R. & Vajda, S. DARS (Decoys As the Reference State) potentials for protein-protein docking. Biophys. J. 95, 4217–4227 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gilson, M.K. & Honig, B. Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins 4, 7–18 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Brooks, B.R. et al. Charmm - a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  32. Lorenzen, S. & Zhang, Y. Identification of near-native structures by clustering protein docking conformations. Proteins 68, 187–194 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Shortle, D., Simons, K.T. & Baker, D. Clustering of low-energy conformations near the native structures of small proteins. Proc. Natl. Acad. Sci. USA 95, 11158–11162 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mendez, R., Leplae, R., Lensink, M.F. & Wodak, S.J. Assessment of CAPRI predictions in rounds 3-5 shows progress in docking procedures. Proteins 60, 150–169 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Lensink, M.F., Mendez, R. & Wodak, S.J. Docking and scoring protein complexes: CAPRI 3rd Edition. Proteins 69, 704–718 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Lensink, M.F. & Wodak, S.J. Docking and scoring protein interactions: CAPRI 2009. Proteins 78, 3073–3084 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Lensink, M.F. & Wodak, S.J. Docking, scoring, and affinity prediction in CAPRI. Proteins 81, 2082–2095 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Lensink, M.F. et al. Prediction of homo- and hetero-protein complexes by protein docking and template-based modeling: a CASP-CAPRI experiment. Proteins 84, 323–348 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Kamal, J.K., Benchaar, S.A., Takamoto, K., Reisler, E. & Chance, M.R. Three-dimensional structure of cofilin bound to monomeric actin derived by structural mass spectrometry data. Proc. Natl. Acad. Sci. USA 104, 7910–7915 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kamal, J.K. & Chance, M.R. Modeling of protein binary complexes using structural mass spectrometry data. Protein Sci. 17, 79–94 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Luxan, G. et al. Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat. Med. 19, 193–201 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Tran, K. et al. Vaccine-elicited primate antibodies use a distinct approach to the HIV-1 primary receptor binding site informing vaccine redesign. Proc. Natl. Acad. Sci. USA 111, E738–E747 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schwede, T. et al. Outcome of a workshop on applications of protein models in biomedical research. Structure 17, 151–159 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sondermann, H., Nagar, B., Bar-Sagi, D. & Kuriyan, J. Computational docking and solution x-ray scattering predict a membrane-interacting role for the histone domain of the Ras activator son of sevenless. Proc. Natl. Acad. Sci. USA 102, 16632–16637 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bourdon, A. et al. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat. Genet. 39, 776–780 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Cosconati, S., Marinelli, L., Lavecchia, A. & Novellino, E. Characterizing the 1,4-dihydropyridines binding interactions in the L-type Ca2+ channel: model construction and docking calculations. J. Med. Chem. 50, 1504–1513 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Rumpel, S., Becker, S. & Zweckstetter, M. High-resolution structure determination of the CylR2 homodimer using paramagnetic relaxation enhancement and structure-based prediction of molecular alignment. J. Biomol. NMR 40, 1–13 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Kucuk, C. et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from gammadelta-T or NK cells. Nat. Commun. 6, 6025 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Ye, Z., Musiol, E.M., Weber, T. & Williams, G.J. Reprogramming acyl carrier protein interactions of an Acyl-CoA promiscuous trans-acyltransferase. Chem. Biol. 21, 636–646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H.J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 33, W363–W367 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Steeland, S. et al. Generation and characterization of small single domain antibodies inhibiting human tumor necrosis factor receptor 1. J. Biol. Chem. 290, 4022–4037 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Bohnuud, T. et al. A benchmark testing ground for integrating homology modeling and protein docking. Proteins (2016) http://dx.doi.org/10.1002/prot.25063.

  53. Chen, R., Li, L. & Weng, Z. ZDOCK: an initial-stage protein-docking algorithm. Proteins 52, 80–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Brenke, R. et al. Application of asymmetric statistical potentials to antibody-protein docking. Bioinformatics 28, 2608–2614 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Comeau, S.R. & Camacho, C.J. Predicting oligomeric assemblies: N-mers a primer. J. Struct. Biol. 150, 233–244 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Pierce, B., Tong, W. & Weng, Z. M-ZDOCK: a grid-based approach for Cn symmetric multimer docking. Bioinformatics 21, 1472–1478 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Yang, S. Methods for SAXS-based structure determination of biomolecular complexes. Adv. Mater. 26, 7902–7910 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xia, B. et al. Accounting for observed small angle X-ray scattering profile in the protein-protein docking server ClusPro. J. Comput. Chem. 36, 1568–1572 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pons, C. et al. Structural characterization of protein-protein complexes by integrating computational docking with small-angle scattering data. J. Mol. Biol. 403, 217–230 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Schneidman-Duhovny, D., Hammel, M. & Sali, A. Macromolecular docking restrained by a small angle X-ray scattering profile. J. Struct. Biol. 173, 461–471 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Bernfield, M. et al. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729–777 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Lindahl, U. Heparan sulfate-protein interactions - A concept for drug design? Thromb. Haemostasis 98, 109–115 (2007).

    Article  CAS  Google Scholar 

  63. Fugedi, P. The potential of the molecular diversity of heparin and heparan sulfate for drug development. Mini Rev. Med. Chem. 3, 659–667 (2003).

    Article  PubMed  Google Scholar 

  64. Esko, J.D. & Lindahl, U. Molecular diversity of heparan sulfate. J. Clin. Invest. 108, 169–173 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Forster, M. & Mulloy, B. Computational approaches to the identification of heparin-binding sites on the surfaces of proteins. Biochem. Soc. Trans. 34, 431–434 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Mottarella, S.E. et al. Docking server for the identification of heparin binding sites on proteins. J. Chem. Inf. Model. 54, 2068–2078 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gray, J.J. et al. Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J. Mol. Biol. 331, 281–299 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Zacharias, M. ATTRACT: protein-protein docking in CAPRI using a reduced protein model. Proteins 60, 252–256 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Dominguez, C., Boelens, R. & Bonvin, A.M.J.J. HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. de Vries, S.J., van Dijk, M. & Bonvin, A.M. The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc. 5, 883–897 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Janin, J. et al. CAPRI: a critical assessment of predicted interactions. Proteins 52, 2–9 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Mendez, R., Leplae, R., De Maria, L. & Wodak, S.J. Assessment of blind predictions of protein-protein interactions: current status of docking methods. Proteins 52, 51–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. de Vries, S.J., Schindler, C.E., Chauvot de Beauchene, I. & Zacharias, M. A web interface for easy flexible protein-protein docking with ATTRACT. Biophys. J. 108, 462–465 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Moal, I.H. & Bates, P.A. SwarmDock and the use of normal modes in protein-protein docking. Int. J. Mol. Sci. 11, 3623–3648 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ramirez-Aportela, E., Lopez-Blanco, J.R. & Chacon, P. FRODOCK 2.0: fast protein-protein docking server. Bioinformatics 32, 2386–2388 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Yu, J. et al. InterEvDock: a docking server to predict the structure of protein-protein interactions using evolutionary information. Nucleic Acids Res. 44, W542–W549 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pierce, B.G., Hourai, Y. & Weng, Z. Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS One 6, e24657 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tovchigrechko, A. & Vakser, I.A. GRAMM-X public web server for protein-protein docking. Nucleic Acids Res. 34, W310–W314 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kozakov, D., Schueler-Furman, O. & Vajda, S. Discrimination of near-native structures in protein-protein docking by testing the stability of local minima. Proteins 72, 993–1004 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Moghadasi, M. et al. The impact of side-chain packing on protein docking refinement. J. Chem. Inf. Model. 55, 872–881 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Padhorny, D. et al. Protein-protein docking by fast generalized Fourier transforms on 5D rotational manifolds. Proc. Natl. Acad. Sci. USA 113, E4286–E4293 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gruschus, J.M., Greene, L.E., Eisenberg, E. & Ferretti, J.A. Experimentally biased model structure of the Hsc70/auxilin complex: substrate transfer and interdomain structural change. Protein Sci. 13, 2029–2044 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu, J., Wang, H., Zuo, Y. & Farmer, S.R. Functional interaction between peroxisome proliferator-activated receptor gamma and beta-catenin. Mol. Cell. Biol. 26, 5827–5837 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee, D.Y. et al. Mutagenesis and modeling of the peroxiredoxin (Prx) complex with the NMR structure of ATP-bound human sulfiredoxin implicate aspartate 187 of Prx I as the catalytic residue in ATP hydrolysis. Biochemistry 45, 15301–15309 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Watson, A.A. et al. The crystal structure and mutational binding analysis of the extracellular domain of the platelet-activating receptor CLEC-2. J. Biol. Chem. 282, 3165–3172 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Martin, M.C., Allan, L.A., Mancini, E.J. & Clarke, P.R. The docking interaction of caspase-9 with ERK2 provides a mechanism for the selective inhibitory phosphorylation of caspase-9 at threonine 125. J. Biol. Chem. 283, 3854–3865 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Liu, C. et al. The SH3-like domain switches its interaction partners to modulate the repression activity of mycobacterial iron-dependent transcription regulator in response to metal ion fluctuations. J. Biol. Chem. 283, 2439–2453 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Pilpa, R.M. et al. Functionally distinct NEAT (NEAr Transporter) domains within the Staphylococcus aureus IsdH/HarA protein extract heme from methemoglobin. J. Biol. Chem. 284, 1166–1176 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liang, S. et al. Mapping of a microbial protein domain involved in binding and activation of the TLR2/TLR1 heterodimer. J. Immunol. 182, 2978–2985 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Cohavi, O., Tobi, D. & Schreiber, G. Docking of antizyme to ornithine decarboxylase and antizyme inhibitor using experimental mutant and double-mutant cycle data. J. Mol. Biol. 390, 503–515 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Hofmann, W.A. et al. SUMOylation of nuclear actin. J. Cell Biol. 186, 193–200 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Arthur, C.J. et al. Structure and malonyl CoA-ACP transacylase binding of streptomyces coelicolor fatty acid synthase acyl carrier protein. ACS Chem. Biol. 4, 625–636 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Nuth, M. & Cowan, J.A. Iron-sulfur cluster biosynthesis: characterization of IscU-IscS complex formation and a structural model for sulfide delivery to the [2Fe-2S] assembly site. J. Biol. Inorg. Chem. 14, 829–839 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Stauch, B. et al. Model structure of APOBEC3C reveals a binding pocket modulating ribonucleic acid interaction required for encapsidation. Proc. Natl. Acad. Sci. USA 106, 12079–12084 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Venkatachari, N.J. et al. Human immunodeficiency virus type 1 Vpr: oligomerization is an essential feature for its incorporation into virus particles. Virol. J. 7, 119 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Fredericks, W.J. et al. The bladder tumor suppressor protein TERE1 (UBIAD1) modulates cell cholesterol: Implications for tumor progression. DNA Cell. Biol. 30, 851–864 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lira-Navarrete, E. et al. Structural insights into the mechanism of protein o-fucosylation. PLoS One 6, e25365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, D. et al. A comprehensive model of the spectrin divalent tetramer binding region deduced using homology modeling and chemical cross-linking of a mini-spectrin. J. Biol. Chem. 285, 29535–29545 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang, G.F. et al. Ligand-independent antiapoptotic function of estrogen receptor-beta in lung cancer cells. Mol. Endocrinol. 24, 1737–1747 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Naudin, C. et al. The occluding loop of cathepsin B prevents its effective inhibition by human kininogens. J. Mol. Biol. 400, 1022–1035 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Guzman, L. et al. Blockade of ethanol-induced potentiation of glycine receptors by a peptide that interferes with Gbetagamma binding. J. Pharmacol. Exp. Ther. 331, 933–939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xi, J. et al. Interaction between the T4 helicase-loading protein (gp59) and the DNA polymerase (gp43): A locking mechanism to delay replication during replisome assembly. Biochemistry 44, 4600–4600 (2005).

    Article  CAS  Google Scholar 

  103. Nelson, S.W., Yang, J.S. & Benkovic, S.J. Site-directed mutations of T4 helicase loading protein (gp59) reveal multiple modes of DNA polymerase inhibition and the mechanism of unlocking by gp41 helicase. J. Biol. Chem. 281, 8697–8706 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Sobrado, P. et al. Identification of the binding region of the [2Fe-2S] ferredoxin in stearoyl-acyl carrier protein desaturase: insight into the catalytic complex and mechanism of action. Biochemistry 45, 4848–4858 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Kedlaya, R.H., Bhat, K.M., Mitchell, J., Darnell, S.J. & Setaluri, V. TRP1 interacting PDZ-domain protein GIPC forms oligomers and is localized to intracellular vesicles in human melanocytes. Arch. Biochem. Biophys. 454, 160–169 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li, D., Tang, H.Y. & Speicher, D.W. A structural model of the erythrocyte spectrin heterodimer initiation site determined using homology modeling and chemical cross-linking. J. Biol. Chem. 283, 1553–1562 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Krauss, U., Losi, A., Gartner, W., Jaeger, K.E. & Eggert, T. Initial characterization of a blue-light sensing, phototropin-related protein from Pseudomonas putida: a paradigm for an extended LOV construct. Phys. Chem. Chem. Phys. 7, 2804–2811 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Surolia, I., Reddy, G.B. & Sinha, S. Hierarchy and the mechanism of fibril formation in ADan peptides. J. Neurochem. 99, 537–548 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Alminaite, A. et al. Oligomerization of hantavirus nucleocapsid protein: analysis of the N-terminal coiled-coil domain. J. Virol. 80, 9073–9081 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Alminaite, A., Backstrom, V., Vaheri, A. & Plyusnin, A. Oligomerization of hantaviral nucleocapsid protein: charged residues in the N-terminal coiled-coil domain contribute to intermolecular interactions. J. Gen. Virol. 89, 2167–2174 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Juszczyk, P. et al. Binding epitopes and interaction structure of the neuroprotective protease inhibitor cystatin c with beta-amyloid revealed by proteolytic excision mass spectrometry and molecular docking simulation. J. Med. Chem. 52, 2420–2428 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Brown, K.A., Dayal, S., Ai, X., Rumbles, G. & King, P.W. Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production. J. Am. Chem. Soc. 132, 9672–9680 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Raab, M., Parthasarathi, L., Treumann, A., Moran, N. & Daxecker, H. Differential binding of ICln in platelets to integrin-derived activating and inhibitory peptides. Biochem. Biophys. Res. Commun. 392, 258–263 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Nan, R. et al. Zinc binding to the Tyr402 and His402 allotypes of complement factor H: possible implications for age-related macular degeneration. J. Mol. Biol. 408, 714–735 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sato, K., Crowley, P.B. & Dennison, C. Transient homodimer interactions studied using the electron self-exchange reaction. J. Biol. Chem. 280, 19281–19288 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Man, P. et al. Accessibility changes within diphtheria toxin T domain when in the functional molten globule state, as determined using hydrogen/deuterium exchange measurements. FEBS J. 277, 653–662 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Wang, G.S. et al. Solution structure of the phosphoryl transfer complex between the signal transducing proteins HPr and IIA(Glucose) of the Escherichia coli phosphoenolpyruvate : sugar phosphotransferase system. EMBO J. 19, 5635–5649 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Leysen, S., Vanderkelen, L., Weeks, S.D., Michiels, C.W. & Strelkov, S.V. Structural basis of bacterial defense against g-type lysozyme-based innate immunity. Cell. Mol. Life Sci. 70, 1113–1122 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Fiser, A. & Sali, A. Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol. 374, 461–491 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Viswanath, S., Ravikant, D.V. & Elber, R. DOCK/PIERR: web server for structure prediction of protein-protein complexes. Methods Mol. Biol. 1137, 199–207 (2014).

    Article  CAS  PubMed  Google Scholar 

  121. Fernandez-Recio, J., Totrov, M. & Abagyan, R. ICM-DISCO docking by global energy optimization with fully flexible side-chains. Proteins 52, 113–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Esquivel-Rodriguez, J., Filos-Gonzalez, V., Li, B. & Kihara, D. Pairwise and multimeric protein-protein docking using the LZerD program suite. Methods Mol. Biol. 1137, 209–234 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Terashi, G. et al. The SKE-DOCK server and human teams based on a combined method of shape complementarity and free energy estimation. Proteins 69, 866–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. May, A. & Zacharias, M. Protein-protein docking in CAPRI using ATTRACT to account for global and local flexibility. Proteins 69, 774–780 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Huang, S.Y. & Zou, X. An iterative knowledge-based scoring function for protein-protein recognition. Proteins 72, 557–579 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Eisenstein, M., Ben-Shimon, A., Frankenstein, Z. & Kowalsman, N. CAPRI targets T29-T42: proving ground for new docking procedures. Proteins 78, 3174–3181 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Andrusier, N., Mashiach, E., Nussinov, R. & Wolfson, H.J. Principles of flexible protein-protein docking. Proteins 73, 271–289 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Shen, Y. Improved flexible refinement of protein docking in CAPRI rounds 22-27. Proteins 81, 2129–2136 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Heo, L., Lee, H. & Seok, C. GalaxyRefineComplex: refinement of protein-protein complex model structures driven by interface repacking. Sci. Rep. 6, 32153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cheng, T.M., Blundell, T.L. & Fernandez-Recio, J. pyDock: electrostatics and desolvation for effective scoring of rigid-body protein-protein docking. Proteins 68, 503–515 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Zhou, H.X. & Qin, S. Interaction-site prediction for protein complexes: a critical assessment. Bioinformatics 23, 2203–2209 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This investigation was supported by grants R35 GM118078 and R01 GM061867 from the National Institute of General Medical Sciences to S.V., and grants DBI 1147082, DBI 1458509, and AF 1527292 from the National Science Foundation to S.V. and D.K.

Author information

Authors and Affiliations

Authors

Contributions

D.K., D.R.H., B.X., and D.B. developed the server; D.K., D.R.H., D.P., B.X., and K.A.P. performed experiments; S.V., K.A.P., D.R.H., and C.Y. prepared the manuscript.

Corresponding authors

Correspondence to Dima Kozakov or Sandor Vajda.

Ethics declarations

Competing interests

The PIPER docking program, used in the ClusPro server, has been licensed by Boston University to Acpharis Inc., and to Schrodinger LLC. The companies sublicense the program for commercial use. However, the ClusPro server is free for academic and governmental research.

Supplementary information

Supplementary Table 1

Performance of ClusPro on Docking Benchmark 4.0. (PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozakov, D., Hall, D., Xia, B. et al. The ClusPro web server for protein–protein docking. Nat Protoc 12, 255–278 (2017). https://doi.org/10.1038/nprot.2016.169

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.169

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics