Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Timekeepers of the future

The latest generation of optical atomic clocks has reached such a degree of accuracy that questions about the need to redefine the second are raised. But even without such a redefinition, these breakthroughs will enable unprecedented precision tests of fundamental physics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The fractional uncertainty of atomic clocks has improved dramatically in the past decade.

References

  1. Essen L. & Parry, J. V. L. Nature 176, 280–285 (1955).

    Article  ADS  Google Scholar 

  2. Li, R. et al. Metrologia 48, 283–289 (2011).

    Article  ADS  Google Scholar 

  3. Guéna, J. et al. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 59, 391–410 (2012).

    Article  Google Scholar 

  4. Margolis, H. S. Contemp. Phys. 51, 37–58 (2010).

    Article  ADS  Google Scholar 

  5. Hinkley, N. et al. Science 341, 1215–1218 (2013).

    Article  ADS  Google Scholar 

  6. Chou, C. W. et al. Phys. Rev. Lett. 104, 070802 (2010).

    Article  ADS  Google Scholar 

  7. Bloom, B. J. et al. Preprint at http://arxiv.org/abs/1309.1137 (2013).

  8. Gill, P. & Riehle, F. in Proc. 20th Eur. Freq. Time Forum 384–387 (EFTF, 2006).

    Google Scholar 

  9. Predehl, K. et al. Science 336, 441–444 (2012).

    Article  ADS  Google Scholar 

  10. http://www.optical-time.eu

  11. Cacciapuoti, L. & Salomon, C. Eur. Phys. J. Special Topics 172, 57–68 (2009).

    Article  ADS  Google Scholar 

  12. Kleppner, D. Phys. Today 59, 10–11 (2006).

    Article  Google Scholar 

  13. Lea, S. N. Rep. Prog. Phys. 70, 1473–1523 (2007).

    Article  ADS  Google Scholar 

  14. Rosenband, T. et al. Science 319, 1808–1812 (2008).

    Article  ADS  Google Scholar 

  15. Schiller, S. et al. Exp. Astron. 23, 573–610 (2009).

    Article  ADS  Google Scholar 

  16. Bondarescu, R. et al. Geophys. J. Int. 191, 78–82 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Supported by the UK National Measurement System and the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Margolis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margolis, H. Timekeepers of the future. Nature Phys 10, 82–83 (2014). https://doi.org/10.1038/nphys2834

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2834

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing