Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Photodetectors based on graphene, other two-dimensional materials and hybrid systems

Subjects

Abstract

Graphene and other two-dimensional materials, such as transition metal dichalcogenides, have rapidly established themselves as intriguing building blocks for optoelectronic applications, with a strong focus on various photodetection platforms. The versatility of these material systems enables their application in areas including ultrafast and ultrasensitive detection of light in the ultraviolet, visible, infrared and terahertz frequency ranges. These detectors can be integrated with other photonic components based on the same material, as well as with silicon photonic and electronic technologies. Here, we provide an overview and evaluation of state-of-the-art photodetectors based on graphene, other two-dimensional materials, and hybrid systems based on the combination of different two-dimensional crystals or of two-dimensional crystals and other (nano)materials, such as plasmonic nanoparticles, semiconductors, quantum dots, or their integration with (silicon) waveguides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photodetection mechanisms.
Figure 2: Metal–graphene–metal and graphene–semiconductor heterojunction photodetectors.
Figure 3: Photodetection enhancement by metallic plasmonic nanostructures and intrinsic plasmons.
Figure 4: Graphene-based bolometers.
Figure 5: Sensitized graphene photoconductive photodetectors.
Figure 6: Antenna-coupled graphene FET terahertz detector.
Figure 7: Photodetection in a 1L-MoS2 and in a SLG/WS2/SLG heterostructure.

Similar content being viewed by others

References

  1. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    Article  CAS  Google Scholar 

  2. Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale (in the press).

  3. Sun, Z. et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803–810 (2010).

    Article  CAS  Google Scholar 

  4. Koppens, F. H. L., Chang, D. E. & García de Abajo, F. J. Graphene plasmonics: A platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

    Article  CAS  Google Scholar 

  5. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nature Photon. 6, 749–758 (2012).

    Article  CAS  Google Scholar 

  6. Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    Article  CAS  Google Scholar 

  7. Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nature Nanotech. 9, 257–261 (2014).

    Article  CAS  Google Scholar 

  8. Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nature Nanotech. 9, 262–267 (2014).

    Article  CAS  Google Scholar 

  9. Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    Article  CAS  Google Scholar 

  10. Low, T. & Avouris, P. Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8, 1086–1101 (2014).

    Article  CAS  Google Scholar 

  11. Dawlaty, J. M., Shivaraman, S., Chandrashekhar, M., Rana, F. & Spencer, M. G. Measurement of ultrafast carrier dynamics in epitaxial graphene. Appl. Phys. Lett. 92, 42116 (2008).

    Article  CAS  Google Scholar 

  12. Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nature Commun. 4, 1987 (2013).

    Article  CAS  Google Scholar 

  13. Dawlaty, J. M. et al. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl. Phys. Lett. 93, 131905 (2008).

    Article  CAS  Google Scholar 

  14. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    Article  CAS  Google Scholar 

  15. Kuzmenko, A. B., van Heumen, E., Carbone, F. & van der Marel, D. Universal optical conductance of graphite. Phys. Rev. Lett. 100, 117401 (2008).

    Article  CAS  Google Scholar 

  16. Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys. 4, 532–535 (2008).

    Article  CAS  Google Scholar 

  17. Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    Article  CAS  Google Scholar 

  18. Xia, F., Mueller, T., Lin, Y.-M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009).

    Article  CAS  Google Scholar 

  19. Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nature Photon. 4, 297–301 (2010).

    Article  CAS  Google Scholar 

  20. Gan, X. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photon. 7, 883–887 (2013).

    Article  CAS  Google Scholar 

  21. Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photon. 7, 892–896 (2013).

    Article  CAS  Google Scholar 

  22. Wang, X., Cheng, Z., Xu, K., Tsang, H. K. & Xu, J. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photon. 7, 888–891 (2013).

    Article  CAS  Google Scholar 

  23. Novoselov, K. S. & Castro Neto, A. H. Two-dimensional crystals-based heterostructures: materials with tailored properties. Phys. Scripta T146, 014006 (2012).

    Article  CAS  Google Scholar 

  24. Bonaccorso, F. et al. Production and processing of graphene and 2D crystals. Mater. Today 15, 564–589 (December, 2012).

    Article  CAS  Google Scholar 

  25. Wilson, J. A. & Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).

    Article  CAS  Google Scholar 

  26. Peters, E. C., Lee, E. J. H., Burghard, M. & Kern, K. Gate dependent photocurrents at a graphene p–n junction. Appl. Phys. Lett. 97, 193102 (2010).

    Article  CAS  Google Scholar 

  27. Rao, G., Freitag, M., Chiu, H.-Y., Sundaram, R. S. & Avouris, P. Raman and photocurrent imaging of electrical stress-induced p–n junctions in graphene. ACS Nano 5, 5848–5854 (2011).

    Article  CAS  Google Scholar 

  28. Mueller, T., Xia, F., Freitag, M., Tsang, J. & Avouris, P. Role of contacts in graphene transistors: A scanning photocurrent study. Phys. Rev. B 79, 245430 (2009).

    Article  CAS  Google Scholar 

  29. Farmer, D. B. et al. Chemical doping and electron-hole conduction asymmetry in graphene devices. Nano Lett. 9, 388–392 (2009).

    Article  CAS  Google Scholar 

  30. Lemme, M. C. et al. Gate-activated photoresponse in a graphene p-n junction. Nano Lett. 11, 4134–4137 (2011).

    Article  CAS  Google Scholar 

  31. Freitag, M., Low, T., Xia, F. & Avouris, P. Photoconductivity of biased graphene. Nature Photon. 7, 53–59 (2012).

    Article  CAS  Google Scholar 

  32. Kim, R., Perebeinos, V. & Avouris, P. Relaxation of optically excited carriers in graphene. Phys. Rev. B 84, 075449 (2011).

    Article  CAS  Google Scholar 

  33. Malic, E., Winzer, T., Bobkin, E. & Knorr, A. Microscopic theory of absorption and ultrafast many-particle kinetics in graphene. Phys. Rev. B 84, 205406 (2011).

    Article  CAS  Google Scholar 

  34. Tomadin, A., Brida, D., Cerullo, G., Ferrari, A. C. & Polini, M. Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening. Phys. Rev. B 88, 035430 (2013).

    Article  CAS  Google Scholar 

  35. Winzer, T., Knorr, A. & Malic, E. Carrier multiplication in graphene. Nano Lett. 10, 4839–4843 (2010).

    Article  CAS  Google Scholar 

  36. Xu, X., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    Article  CAS  Google Scholar 

  37. Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–52 (2011).

    Article  CAS  Google Scholar 

  38. Song, J. C. W., Rudner, M. S., Marcus, C. M. & Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

    Article  CAS  Google Scholar 

  39. Sun, D. et al. Ultrafast hot-carrier-dominated photocurrent in graphene. Nature Nanotech. 7, 114–118 (2012).

    Article  CAS  Google Scholar 

  40. Kotov, V. N., Uchoa, B., Pereira, V. M., Guinea, F. & Castro Neto, A. H. Electron–electron interactions in graphene: current status and perspectives. Rev. Mod. Phys. 84, 1067–1125 (2012).

    Article  CAS  Google Scholar 

  41. Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nature Phys. 9, 248–252 (2013).

    Article  CAS  Google Scholar 

  42. Song, J. C. W., Tielrooij, K. J., Koppens, F. H. L. & Levitov, L. S. Photoexcited carrier dynamics and impact-excitation cascade in graphene. Phys. Rev. B 87, 155429 (2013).

    Article  CAS  Google Scholar 

  43. Gierz, I. et al. Snapshots of non-equilibrium Dirac carrier distributions in graphene. Nature Mater. 12, 1119–1124 (2013).

    Article  CAS  Google Scholar 

  44. Johannsen, J. C. et al. Direct view of hot carrier dynamics in graphene. Phys. Rev. Lett. 111, 027403 (2013).

    Article  CAS  Google Scholar 

  45. Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A. C. & Robertson, J. Kohn anomalies and electron–phonon interactions in graphite. Phys. Rev. Lett. 93, 185503 (2004).

    Article  CAS  Google Scholar 

  46. Lazzeri, M., Piscanec, S., Mauri, F., Ferrari, A. & Robertson, J. Electron transport and hot phonons in carbon nanotubes. Phys. Rev. Lett. 95, 236802 (2005).

    Article  CAS  Google Scholar 

  47. Bistritzer, R. & MacDonald, A. H. Electronic cooling in graphene. Phys. Rev Lett. 102, 206410 (2009).

    Article  CAS  Google Scholar 

  48. Tse, W.-K. & Das Sarma, S. Energy relaxation of hot Dirac fermions in graphene. Phys. Rev. B 79, 235406 (2009).

    Article  CAS  Google Scholar 

  49. Song, J. C. W., Reizer, M. Y. & Levitov, L. S. Disorder-assisted electron–phonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 109, 106602 (2012).

    Article  CAS  Google Scholar 

  50. Graham, M. W., Shi, S-F., Ralph, D. C., Park, J. & McEuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nature Phys. 9, 103–108 (2012).

    Article  CAS  Google Scholar 

  51. Betz, A. C. et al. Supercollision cooling in undoped graphene. Nature Phys. 9, 109–112 (2012).

    Article  CAS  Google Scholar 

  52. Freitag, M., Low, T. & Avouris, P. Increased responsivity of suspended graphene photodetectors. Nano Lett. 13, 1644–1648 (2013).

    Article  CAS  Google Scholar 

  53. Ashcroft, N. W. & Mermin, N. D. Solid State Physics 848 (Cengage Learning, 1976).

    Google Scholar 

  54. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  Google Scholar 

  55. Soref, R. A. Silicon-based optoelectronics. Proc. IEEE 81, 1687–1706 (1993).

    Article  CAS  Google Scholar 

  56. Richards, P. L. Bolometers for infrared and millimeter waves. J. Appl. Phys. 76, 1 (1994).

    Article  CAS  Google Scholar 

  57. Rose, A. Concepts in Photoconductivity and Allied Problems (Krieger, 1978).

    Google Scholar 

  58. Dyakonov, M. & Shur, M. Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current. Phys. Rev. Lett. 71, 2465–2468 (1993).

    Article  CAS  Google Scholar 

  59. Dyakonov, M. & Shur, M. Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electron Dev. 43, 380–387 (1996).

    Article  CAS  Google Scholar 

  60. Giuliani, G. F. & Vignale, G. Quantum Theory of the Electron Liquid (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  61. Tomadin, A. & Polini, M. Theory of the plasma-wave photoresponse of a gated graphene sheet. Phys. Rev. B 88, 205426 (2013).

    Article  CAS  Google Scholar 

  62. Vicarelli, L. et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nature Mater. 11, 865–871 (2012).

    Article  CAS  Google Scholar 

  63. Spirito, D. et al. High performance bilayer-graphene terahertz detectors. Appl. Phys. Lett. 104, 061111 (2014).

    Article  CAS  Google Scholar 

  64. Park, J., Ahn, Y. H. & Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742–1746 (2009).

    Article  CAS  Google Scholar 

  65. Lee, E. J. H., Balasubramanian, K., Weitz, R. T., Burghard, M. & Kern, K. Contact and edge effects in graphene devices. Nature Nanotech. 3, 486–490 (2008).

    Article  CAS  Google Scholar 

  66. Xia, F. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009).

    Article  CAS  Google Scholar 

  67. Giovannetti, G. et al. Doping graphene with metal contacts. Phys. Rev. Lett. 101, 26803 (2008).

    Article  CAS  Google Scholar 

  68. Huard, B., Stander, N., Sulpizio, J. & Goldhaber-Gordon, D. Evidence of the role of contacts on the observed electron–hole asymmetry in graphene. Phys. Rev. B 78, 121402 (2008).

    Article  CAS  Google Scholar 

  69. Urich, A. et al. Silver nanoisland enhanced Raman interaction in graphene. Appl. Phys. Lett. 101, 153113 (2012).

    Article  CAS  Google Scholar 

  70. Withers, F., Bointon, T. H., Craciun, M. F. & Russo, S. All-graphene photodetectors. ACS Nano 7, 5052–5057 (2013).

    Article  CAS  Google Scholar 

  71. Prechtel, L. et al. Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene. Nature Commun. 3, 646 (2012).

    Article  CAS  Google Scholar 

  72. Freitag, M., Low, T. & Avouris, P. Increased responsivity of suspended graphene photodetectors. Nano Lett. 13, 1644–1648 (2013).

    Article  CAS  Google Scholar 

  73. Echtermeyer, T. J. et al. Photothermoelectric and photoelectric contributions to light detection in metal–graphene–metal photodetectors. Nano Lett. 14, 3733–3742 (2014).

    Article  CAS  Google Scholar 

  74. Urich, A., Unterrainer, K. & Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 11, 2804–2808 (2011).

    Article  CAS  Google Scholar 

  75. Furchi, M. et al. Microcavity-integrated graphene photodetector. Nano Lett. 12, 2773–2777 (2012).

    Article  CAS  Google Scholar 

  76. Engel, M. et al. Light–matter interaction in a microcavity-controlled graphene transistor. Nature Commun. 3, 906 (2012).

    Article  CAS  Google Scholar 

  77. Shiue, R., Gan, X., Gao, Y., Li, L. & Yao, X. Enhanced photodetection in graphene-integrated photonic crystal cavity. Appl. Phys. Lett. 1, 1–11 (2013).

    Google Scholar 

  78. Liu, J. et al. High-performance, tensile-strained Ge p–i–n photodetectors on a Si platform. Appl. Phys. Lett. 87, 103501 (2005).

    Article  CAS  Google Scholar 

  79. Su, S. et al. GeSn p–i–n photodetector for all telecommunication bands detection. Opt. Express 19, 6400–6405 (2011).

    Article  CAS  Google Scholar 

  80. Schedin, F. Surface-enhanced Raman spectroscopy of graphene. ACS Nano 4, 5617–5626 (2010).

    Article  CAS  Google Scholar 

  81. Mertens, J. et al. Controlling subnanometer gaps in plasmonic dimers using graphene. Nano Lett. 13, 5033–5038 (2013).

    Article  CAS  Google Scholar 

  82. Echtermeyer, T. J. et al. Strong plasmonic enhancement of photovoltage in graphene. Nature Commun. 2, 458 (2011).

    Article  CAS  Google Scholar 

  83. Liu, Y. et al. Plasmon resonance enhanced multicolour photodetection by graphene. Nature Commun. 2, 579 (2011).

    Article  CAS  Google Scholar 

  84. Jablan, M., Soljacic, M. & Buljan, H. Plasmons in graphene: Fundamental properties and potential applications. Proc. IEEE 101, 1689–1704 (2013).

    Article  CAS  Google Scholar 

  85. Thongrattanasiri, S., Koppens, F. H. L. & García de Abajo, F. J. Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 108, 047401 (2012).

    Article  CAS  Google Scholar 

  86. Freitag, M. et al. Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nature Commun. 4, 1951 (2013).

    Article  CAS  Google Scholar 

  87. Chen, C.-C., Aykol, M., Chang, C.-C., Levi, A. F. J. & Cronin, S. B. Graphene–silicon Schottky diodes. Nano Lett. 11, 1863–1867 (2011).

    Article  CAS  Google Scholar 

  88. Li, X. et al. Graphene-on-silicon Schottky junction solar cells. Adv. Mater. 22, 2743–2748 (2010).

    Article  CAS  Google Scholar 

  89. Miao, X. et al. High efficiency graphene solar cells by chemical doping. Nano Lett. 12, 2745–2750 (2012).

    Article  CAS  Google Scholar 

  90. An, X., Liu, F., Jung, Y. J. & Kar, S. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 13, 909–916 (2013).

    Article  CAS  Google Scholar 

  91. Tongay, S., Schumann, T. & Hebard, A. F. Graphite based Schottky diodes formed on Si, GaAs, and 4H-SiC substrates. Appl. Phys. Lett. 95, 222103 (2009).

    Article  CAS  Google Scholar 

  92. Tongay, S. et al. Rectification at graphene–semiconductor interfaces: Zero-gap semiconductor-based diodes. Phys. Rev. X 2, 011002 (2012).

    Google Scholar 

  93. Amirmazlaghani, M., Raissi, F., Habibpour, O., Vukusic, J. & Stake, J. Graphene–Si Schottky IR detector. IEEE J. Quantum Electron. 49, 589–594 (2013).

    Article  CAS  Google Scholar 

  94. Yan, J. et al. Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotech. 7, 472–478 (2012).

    Article  CAS  Google Scholar 

  95. Tan, Y.-W., Zhang, Y., Stormer, H. L. & Kim, P. Temperature dependent electron transport in graphene. Eur. Phys. J. Spec. Top. 148, 15–18 (2007).

    Article  Google Scholar 

  96. Oostinga, J. B., Heersche, H. B., Liu, X., Morpurgo, A. F. & Vandersypen, L. M. K. Gate-induced insulating state in bilayer graphene devices. Nature Mater. 7, 151–157 (2008).

    Article  CAS  Google Scholar 

  97. Xia, F., Farmer, D. B., Lin, Y-M. & Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010).

    Article  CAS  Google Scholar 

  98. Viljas, J. K. & Heikkilä, T. T. Electron–phonon heat transfer in monolayer and bilayer graphene. Phys. Rev. B 81, 245404 (2010).

    Article  CAS  Google Scholar 

  99. Betz, A. C. et al. Hot electron cooling by acoustic phonons in graphene. Phys. Rev. Lett. 109, 056805 (2012).

    Article  CAS  Google Scholar 

  100. Han, Q. et al. Highly sensitive hot electron bolometer based on disordered graphene. Sci. Rep. 3, 3533 (2013).

    Article  Google Scholar 

  101. Vora, H., Kumaravadivel, P., Nielsen, B. & Du, X. Bolometric response in graphene based superconducting tunnel junctions. Appl. Phys. Lett. 100, 153507 (2012).

    Article  CAS  Google Scholar 

  102. Du, X., Prober, D. E., Vora, H. & Mckitterick, C. B. Graphene-based bolometers. Graphene 2D Mater. 1, 1–22 (2014).

    Google Scholar 

  103. Ryzhii, V. The theory of quantum-dot infrared phototransistors. Semicond. Sci. Technol. 11, 759–765 (1996).

    Article  Google Scholar 

  104. Rowe, M. A. et al. Single-photon detection using a quantum dot optically gated field-effect transistor with high internal quantum efficiency. Appl. Phys. Lett. 89, 253505 (2006).

    Article  CAS  Google Scholar 

  105. Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature Nanotech. 7, 363–368 (2012).

    Article  CAS  Google Scholar 

  106. Sun, Z. et al. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 24, 5878–5883 (2012).

    Article  CAS  Google Scholar 

  107. Klekachev, A. V. et al. Electron accumulation in graphene by interaction with optically excited quantum dots. Physica E 43, 1046–1049 (2011).

    Article  CAS  Google Scholar 

  108. Guo, W. et al. Oxygen-assisted charge transfer between ZnO quantum dots and graphene. Small 9, 3031–3036 (2013).

    Article  CAS  Google Scholar 

  109. McDonald, S. A. et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Mater. 4, 138–142 (2005).

    Article  CAS  Google Scholar 

  110. Konstantatos, G. et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180–183 (2006).

    Article  CAS  Google Scholar 

  111. Böberl, M., Kovalenko, M. V., Gamerith, S., List, E. J. W. & Heiss, W. Inkjet-printed nanocrystal photodetectors operating up to 3 μm wavelengths. Adv. Mater. 19, 3574–3578 (2007).

    Article  CAS  Google Scholar 

  112. Chen, S-Y. et al. Biologically inspired graphene-chlorophyll phototransistors with high gain. Carbon 63, 23–29 (2013).

    Article  CAS  Google Scholar 

  113. Fang, Z. et al. Plasmon-induced doping of graphene. ACS Nano 6, 10222–10228 (2012).

    Article  CAS  Google Scholar 

  114. Sizov, F. & Rogalski, A. THz detectors. Prog. Quantum Electron. 34, 278–347 (2010).

    Article  Google Scholar 

  115. Principi, A., Vignale, G., Carrega, M. & Polini, M. Impact of disorder on Dirac plasmon losses. Phys. Rev. B 88, 121405 (2013).

    Article  CAS  Google Scholar 

  116. Principi, A., Vignale, G., Carrega, M. & Polini, M. Intrinsic lifetime of Dirac plasmons in graphene. Phys. Rev. B 88, 195405 (2013).

    Article  CAS  Google Scholar 

  117. Ryzhii, V. & Ryzhii, M. Graphene bilayer field-effect phototransistor for terahertz and infrared detection. Phys. Rev. B 79, 245311 (2009).

    Article  CAS  Google Scholar 

  118. Ryzhii, V., Satou, A. & Otsuji, T. Plasma waves in two-dimensional electron–hole system in gated graphene heterostructures. J. Appl. Phys. 101, 024509 (2007).

    Article  CAS  Google Scholar 

  119. Knap, W. et al. Nanometer size field effect transistors for terahertz detectors. Nanotechnology 24, 214002 (2013).

    Article  CAS  Google Scholar 

  120. Mittendorff, M. et al. Ultrafast graphene-based broadband THz detector. Appl. Phys. Lett. 103, 021113 (2013).

    Article  CAS  Google Scholar 

  121. Cai, X. et al. Sensitive room-temperature terahertz detection via photothermoelectric effect in graphene. Preprint at http://arxiv.org/abs/1305.3297 (2013).

  122. Fivaz, R., Mooser, E. & Moose, E. Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 163, 743–755 (1967).

    Article  CAS  Google Scholar 

  123. Frindt, R. F. & Yoffe, A. D. Physical properties of layer structures: Optical properties and photoconductivity of thin crystals of molybdenum disulphide. Proc. R. Soc. A 273, 69–83 (1963).

    Article  Google Scholar 

  124. Joensen, P., Frindt, R. F. & Morrison, S. R. Single-layer MoS2 . Mater. Res. Bull. 21, 457–461 (1986).

    Article  CAS  Google Scholar 

  125. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  CAS  Google Scholar 

  126. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  127. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    Article  CAS  Google Scholar 

  128. Yin, Z. et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2012).

    Article  CAS  Google Scholar 

  129. Choi, W. et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 24, 5832–5836 (2012).

    Article  CAS  Google Scholar 

  130. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2 . Nature Nanotech. 8, 497–501 (2013).

    Article  CAS  Google Scholar 

  131. Tsai, D.-S. et al. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 7, 3905–3911 (2013).

    Article  CAS  Google Scholar 

  132. Lee, H. S. et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695–700 (2012).

    Article  CAS  Google Scholar 

  133. Liu, F. et al. High-sensitivity photodetectors based on multilayer GaTe flakes. ACS Nano 8, 752–760 (2014).

    Article  CAS  Google Scholar 

  134. Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nature Nanotech. 9, 268–272 (2014).

    Article  CAS  Google Scholar 

  135. Hu, P., Wen, Z., Wang, L., Tan, P. & Xiao, K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 6, 5988–5994 (2012).

    Article  CAS  Google Scholar 

  136. Hu, P. et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 13, 1649–1654 (2013).

    Article  CAS  Google Scholar 

  137. Jacobs-Gedrim, R. B. et al. Extraordinary photoresponse in two-dimensional In2Se3 nanosheets. ACS Nano 8, 514–521 (2014).

    Article  CAS  Google Scholar 

  138. Buscema, M. et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347–3352 (2014).

    Article  CAS  Google Scholar 

  139. Perea-López, N. et al. Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 23, 5511–5517 (2013).

    Article  CAS  Google Scholar 

  140. Buscema, M. et al. Large and tunable photothermoelectric effect in single-layer MoS2 . Nano Lett. 13, 358–363 (2013).

    Article  CAS  Google Scholar 

  141. Roy, K. et al. Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nature Nanotech. 8, 826–830 (2013).

    Article  CAS  Google Scholar 

  142. Zhang, W. et al. Ultrahigh-gain photodetectors based on atomically thin graphene–MoS2 heterostructures. Sci. Rep. 4, 3826 (2014).

    Article  CAS  Google Scholar 

  143. Liu, C-H., Chang, Y., Norris, T. B. & Zhong, Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nature Nanotech. 9, 273–278 (2014).

    Article  CAS  Google Scholar 

  144. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012).

    Article  CAS  Google Scholar 

  145. Georgiou, T. et al. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nature Nanotech. 8, 100–103 (2013).

    Article  CAS  Google Scholar 

  146. Bernardi, M., Palummo, M. & Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664–3670 (2013).

    Article  CAS  Google Scholar 

  147. Britnell, L. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    Article  CAS  Google Scholar 

  148. Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature Nanotech. 8, 952–958 (2013).

    Article  CAS  Google Scholar 

  149. Zhang, B. Y. et al. Broadband high photoresponse from pure monolayer graphene photodetector. Nature Commun. 4, 1811 (2013).

    Article  CAS  Google Scholar 

  150. Gan, X. et al. Strong enhancement of light–matter interaction in graphene coupled to a photonic crystal nanocavity. Nano Lett. 12, 5626–5631 (2012).

    Article  CAS  Google Scholar 

  151. Chen, L. & Lipson, M. Ultra-low capacitance and high speed germanium photodetectors on silicon. Opt. Express 17, 7901–7906 (2009).

    Article  CAS  Google Scholar 

  152. Novack, A. et al. Germanium photodetector with 60 GHz bandwidth using inductive gain peaking. Opt. Express 21, 28387 (2013).

    Article  CAS  Google Scholar 

  153. Ito, H., Furuta, T., Kodama, S., Watanabe, S. & Ishibashi, T. InP/lnGaAs uni-travelling-carrier photodiode with 220 GHz bandwidth. Electron. Lett. 35, 1556–1557 (1999).

    Article  CAS  Google Scholar 

  154. Sukhovatkin, V., Hinds, S., Brzozowski, L. & Sargent, E. H. Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 324, 1542–1544 (2009).

    Article  CAS  Google Scholar 

  155. Konstantatos, G., Clifford, J., Levina, L. & Sargent, E. H. Sensitive solution-processed visible-wavelength photodetectors. Nature Photon. 1, 531–534 (2007).

    Article  CAS  Google Scholar 

  156. Keuleyan, S., Lhuillier, E., Brajuskovic, V. & Guyot-Sionnest, P. Mid-infrared HgTe colloidal quantum dot photodetectors. Nature Photon. 5, 489–493 (2011).

    Article  CAS  Google Scholar 

  157. Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge A. Tomadin, V. Pellegrini, A. Tredicucci, J. Song, K-J. Tielrooij, L. Levitov, P. Jarillo-Herrero, F. Bonaccorso, S. Kar, A. Kis, E. Lidorikis and T. J. Echtermeyer for useful discussions. We acknowledge funding from the EU Graphene Flagship (contract no. 604391), The Italian Ministry of Education, University, and Research (MIUR) through the program 'FIRB—Futuro in Ricerca 2010', Projects PLASMOGRAPH (Grant No. RBFR10M5BT) and FRONTIER (grant number RBFR10LULP), the Fundacicio Cellex Barcelona, the Career integration grant 294056 (GRANOP), ERC grants CarbonLight, Hetero2D, the Austrian Science Fund FWF (START Y-539), EU grants GENIUS, MEM4WIN, EPSRC Grants EP/K01711X/1, EP/K017144/1, EP/L016087/1 and a Royal Society Wolfson Research Merit Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. H. L. Koppens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koppens, F., Mueller, T., Avouris, P. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotech 9, 780–793 (2014). https://doi.org/10.1038/nnano.2014.215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.215

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing