Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Single-molecule junctions beyond electronic transport

Abstract

The idea of using individual molecules as active electronic components provided the impetus to develop a variety of experimental platforms to probe their electronic transport properties. Among these, single-molecule junctions in a metal–molecule–metal motif have contributed significantly to our fundamental understanding of the principles required to realize molecular-scale electronic components from resistive wires to reversible switches. The success of these techniques and the growing interest of other disciplines in single-molecule-level characterization are prompting new approaches to investigate metal–molecule–metal junctions with multiple probes. Going beyond electronic transport characterization, these new studies are highlighting both the fundamental and applied aspects of mechanical, optical and thermoelectric properties at the atomic and molecular scales. Furthermore, experimental demonstrations of quantum interference and manipulation of electronic and nuclear spins in single-molecule circuits are heralding new device concepts with no classical analogues. In this Review, we present the emerging methods being used to interrogate multiple properties in single molecule-based devices, detail how these measurements have advanced our understanding of the structure–function relationships in molecular junctions, and discuss the potential for future research and applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Probing multiple properties of single-molecule junctions.
Figure 2: Simultaneous measurements of electronic transport and mechanics.
Figure 3: Simultaneous studies of optical effects and transport.
Figure 4: Single-molecule thermoelectric characterization.
Figure 5: Addressing electronic and nuclear spins.
Figure 6: Influence of quantum interference on electronic transport.

Similar content being viewed by others

References

  1. Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974). This article was the first to propose the use of molecules in electronic devices.

    CAS  Google Scholar 

  2. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997).

    CAS  Google Scholar 

  3. Di Ventra, M., Pantelides, S. T. & Lang, N. D. First-principles calculation of transport properties of a molecular device. Phys. Rev. Lett. 84, 979–982 (2000).

    CAS  Google Scholar 

  4. Smit, R. H. M. et al. Measurement of the conductance of a hydrogen molecule. Nature 419, 906–909 (2002). This article was the first to demonstrate the use of the break-junction technique to measure currents through a single-molecule junction.

    CAS  Google Scholar 

  5. Xue, Y. Q., Datta, S. & Ratner, M. A. First-principles based matrix Green's function approach to molecular electronic devices: general formalism. Chemical Phys. 281, 151–170 (2002).

    CAS  Google Scholar 

  6. Reichert, J. et al. Driving current through single organic molecules. Phys. Rev. Lett. 88, 176804 (2002).

    CAS  Google Scholar 

  7. Brandbyge, M., Mozos, J. L., Ordejon, P., Taylor, J. & Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002).

    Google Scholar 

  8. Xu, B. Q. & Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003). This article was the first to implement an STM-based break-junction technique to measure currents through a single-molecule circuit.

    CAS  Google Scholar 

  9. Selzer, Y. et al. Effect of local environment on molecular conduction: Isolated molecule versus self-assembled monolayer. Nano Lett. 5, 61–65 (2005).

    CAS  Google Scholar 

  10. Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).

    CAS  Google Scholar 

  11. Choi, H. J., Marvin, L. C. & Steven, G. L. First-principles scattering-state approach for nonlinear electrical transport in nanostructures. Phys. Rev. B 76, 155420 (2007).

    Google Scholar 

  12. Chen, F. et al. A molecular switch based on potential-induced changes of oxidation state. Nano Lett. 5, 503–506 (2005).

    CAS  Google Scholar 

  13. Lortscher, E., Ciszek, J. W., Tour, J. & Riel, H. Reversible and controllable switching of a single-molecule junction. Small 2, 973–977 (2006).

    CAS  Google Scholar 

  14. Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

    CAS  Google Scholar 

  15. Quek, S. Y. et al. Mechanically controlled binary conductance switching of a single-molecule junction. Nature Nanotech. 4, 230–234 (2009).

    CAS  Google Scholar 

  16. Meisner, J. S. et al. A single-molecule potentiometer. Nano Lett. 11, 1575–1579 (2011).

    CAS  Google Scholar 

  17. Metzger, R. M. et al. Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide. J. Am. Chem. Soc. 119, 10455–10466 (1997).

    CAS  Google Scholar 

  18. Elbing, M. et al. A single-molecule diode. Proc. Natl Acad. Sci. USA 102, 8815–8820 (2005).

    CAS  Google Scholar 

  19. Díez-Pérez, I. et al. Rectification and stability of a single molecular diode with controlled orientation. Nature Chem. 1, 635–641 (2009).

    Google Scholar 

  20. Yee, S. K. et al. Inverse rectification in donor-acceptor molecular heterojunctions. ACS Nano 5, 9256–9263 (2011).

    CAS  Google Scholar 

  21. Nakamura, H., Asai, Y., Hihath, J., Bruot, C. & Tao, N. Switch of conducting orbital by bias-induced electronic contact asymmetry in a bipyrimidinyl-biphenyl diblock molecule: mechanism to achieve a pn directional molecular diode. The J. Physical Chem. C 115, 19931–19938 (2011).

    CAS  Google Scholar 

  22. Mayor, M. et al. Electric current through a molecular rod — relevance of the position of the anchor groups. Angew. Chem. Int. Ed. 42, 5834–5838 (2003).

    CAS  Google Scholar 

  23. Taniguchi, M. et al. Dependence of single-molecule conductance on molecule junction symmetry. J. Am. Chem. Soc. 133, 11426–11429 (2011).

    CAS  Google Scholar 

  24. Aradhya, S. V. et al. Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives. Nano Lett. 12, 1643–1647 (2012).

    CAS  Google Scholar 

  25. Guédon, C. M. et al. Observation of quantum interference in molecular charge transport. Nature Nanotech. 7, 305–309 (2012).

    Google Scholar 

  26. Vázquez, H. et al. Probing the conductance superposition law in single-molecule circuits with parallel paths. Nature Nanotech. 7, 663–667 (2012). These authors illustrated deviations from Kirchoff's circuit rules using experiments and theoretical calculations of molecular circuits.

    Google Scholar 

  27. Bartels, L. Tailoring molecular layers at metal surfaces. Nature Chem. 2, 87–95 (2010).

    CAS  Google Scholar 

  28. Natelson, D. Mechanical break junctions: Enormous information in a nanoscale package. ACS Nano 6, 2871–2876 (2012).

    CAS  Google Scholar 

  29. Akkerman, H. B. & de Boer, B. Electrical conduction through single molecules and self-assembled monolayers. J. Phys. Condens. Matter 20, 013001 (2008).

    Google Scholar 

  30. Ohnishi, H., Kondo, Y. & Takayanagi, K. Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780–783 (1998).

    CAS  Google Scholar 

  31. Agraït, N., Yeyati, A. L. & van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003).

    Google Scholar 

  32. Rubio, G., Agrait, N. & Vieira, S. Atomic-sized metallic contacts: Mechanical properties and electronic transport. Phys. Rev. Lett. 76, 2302–2305 (1996).

    CAS  Google Scholar 

  33. Xu, B. Q., Xiao, X. Y. & Tao, N. J. Measurements of single-molecule electromechanical properties. J. Am. Chem. Soc. 125, 16164–16165 (2003). This article demonstrated the feasibility of measuring bond rupture forces in molecular junctions using the break-junction method.

    CAS  Google Scholar 

  34. Giessibl, F. J. Atomic resolution on Si(111)-(7×7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork. Appl. Phys. Lett. 76, 1470–1472 (2000).

    CAS  Google Scholar 

  35. Sader, J. E. et al. Quantitative force measurements using frequency modulation atomic force microscopy — theoretical foundations. Nanotechnology 16, S94–S101 (2005).

    CAS  Google Scholar 

  36. Ternes, M. et al. Interplay of conductance, force, and structural change in metallic point contacts. Phys. Rev. Lett. 106, 016802 (2011).

    Google Scholar 

  37. Hofer, W. A. & Fisher, A. J. Signature of a chemical bond in the conductance between two metal surfaces. Phys. Rev. Lett. 91, 036803 (2003).

    CAS  Google Scholar 

  38. Jelinek, P., Ondracek, M. & Flores, F. Relation between the chemical force and the tunnelling current in atomic point contacts: a simple model. J. Phys. Condens. Mattter 24, 084001 (2012).

    Google Scholar 

  39. Simmons, J. G. Generalized formula for electric tunnel effect between similar electrodes separated by a thin insulating film. J. App. Phys. 34, 1793–1803 (1963).

    Google Scholar 

  40. Welker, J. & Giessibl, F. J. Revealing the angular symmetry of chemical bonds by atomic force microscopy. Science 336, 444–449 (2012).

    CAS  Google Scholar 

  41. Ternes, M., Lutz, C. P., Hirjibehedin, C. F., Giessibl, F. J. & Heinrich, A. J. The force needed to move an atom on a surface. Science 319, 1066–1069 (2008).

    CAS  Google Scholar 

  42. Nadine, H. et al. Force and conductance during contact formation to a C60 molecule. New J. Phys. 14, 073032 (2012).

    Google Scholar 

  43. Fournier, N., Wagner, C., Weiss, C., Temirov, R. & Tautz, F. S. Force-controlled lifting of molecular wires. Phys. Rev. B 84, 035435 (2011).

    Google Scholar 

  44. Frei, M., Aradhya, S. V., Hybertsen, M. S. & Venkataraman, L. Linker dependent bond rupture force measurements in single-molecule junctions. J. Am. Chem. Soc. 134, 4003–4006 (2012).

    CAS  Google Scholar 

  45. Ahn, S. et al. Electronic transport and mechanical stability of carboxyl linked single-molecule junctions. Phys. Chem. Chem. Phys. 14, 13841–13845 (2012).

    CAS  Google Scholar 

  46. Frei, M., Aradhya, S. V., Koentopp, M., Hybertsen, M. S. & Venkataraman, L. Mechanics and chemistry: Single molecule bond rupture forces correlate with molecular backbone structure. Nano Lett. 11, 1518–1523 (2011). This article presented the first investigations of the correlations between bond rutpure forces with chemical and electronic structure in single-molecule junctions.

    CAS  Google Scholar 

  47. Aradhya, S. V., Frei, M., Hybertsen, M. S. & Venkataraman, L. Van der Waals interactions at metal/organic interfaces at the single-molecule level. Nature Mater. 11, 872–876 (2012).

    CAS  Google Scholar 

  48. Wagner, C., Fournier, N., Tautz, F. S. & Temirov, R. Measurement of the binding energies of the organic-metal perylene-teracarboxylic-dianhydride/Au(111) bonds by molecular manipulation using an atomic force microscope. Phys. Rev. Lett. 109, 076102 (2012).

    CAS  Google Scholar 

  49. Borgia, A., Williams, P. M. & Clarke, J. Single-molecule studies of protein folding. Annu. Rev. Biochem. 77, 101–125 (2008).

    CAS  Google Scholar 

  50. Ruben, M. et al. Charge transport through a cardan-joint molecule. Small 4, 2229–2235 (2008).

    CAS  Google Scholar 

  51. Franco, I., George, C. B., Solomon, G. C., Schatz, G. C. & Ratner, M. A. Mechanically activated molecular switch through single-molecule pulling. J. Am. Chem. Soc. 133, 2242–2249 (2011).

    CAS  Google Scholar 

  52. Ilya, V. P. et al. An approach to measure electromechanical properties of atomic and molecular junctions. J. Phys. Condens. Matter 24, 164210 (2012).

    Google Scholar 

  53. Zhou, J. F., Guo, C. L. & Xu, B. Q. Electron transport properties of single molecular junctions under mechanical modulations. J. Phys. Condens. Matter 24, 164209 (2012).

    Google Scholar 

  54. Nef, C., Frederix, P. L. T. M., Brunner, J., Schonenberger, C. & Calame, M. Force-conductance correlation in individual molecular junctions. Nanotechnology 23, 365201 (2012).

    CAS  Google Scholar 

  55. Galperin, M. & Nitzan, A. Molecular optoelectronics: the interaction of molecular conduction junctions with light. Phys. Chem. Chem. Phys. 14, 9421–9438 (2012).

    CAS  Google Scholar 

  56. Ward, D. R. et al. Simultaneous measurements of electronic conduction and Raman response in molecular junctions. Nano Lett. 8, 919–924 (2008). This article presents one of the first attempts to simultaneously carry out Raman spectroscopy and charge-transfer measurements through a molecular junction.

    CAS  Google Scholar 

  57. Park, H., Lim, A. K. L., Alivisatos, A. P., Park, J. & McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75, 301–303 (1999).

    CAS  Google Scholar 

  58. Fleischm, M., Hendra, P. J. & Mcquilla, A. Raman-spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974).

    Google Scholar 

  59. Ward, D. R., Corley, D. A., Tour, J. M. & Natelson, D. Vibrational and electronic heating in nanoscale junctions. Nature Nanotech. 6, 33–38 (2011).

    CAS  Google Scholar 

  60. Ioffe, Z. et al. Detection of heating in current-carrying molecular junctions by Raman scattering. Nature Nanotech. 3, 727–732 (2008).

    CAS  Google Scholar 

  61. Huang, Z. F., Xu, B. Q., Chen, Y. C., Di Ventra, M. & Tao, N. J. Measurement of current-induced local heating in a single molecule junction. Nano Lett. 6, 1240–1244 (2006).

    CAS  Google Scholar 

  62. Liu, Z. et al. Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nature Commun. 2, 305 (2011).

    Google Scholar 

  63. Jiang, N. et al. Observation of multiple vibrational modes in ultrahigh vacuum tip-enhanced Raman spectroscopy combined with molecular-resolution scanning tunneling microscopy. Nano Lett. 12, 5061–5067 (2011).

    Google Scholar 

  64. Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003). This article presented the first identifiable molecular features in single-molecule photon emission spectra excited by the tunnelling electrons in an STM.

    CAS  Google Scholar 

  65. Wu, S. W., Nazin, G. V. & Ho, W. Intramolecular photon emission from a single molecule in a scanning tunneling microscope. Phys. Rev. B 77, 205430 (2008).

    Google Scholar 

  66. Berndt, R. et al. Photon-emission at molecular resolution induced by a scanning tunneling microscope. Science 262, 1425–1427 (1993).

    CAS  Google Scholar 

  67. Hoffmann, G., Libioulle, L. & Berndt, R. Tunneling-induced luminescence from adsorbed organic molecules with submolecular lateral resolution. Phys. Rev. B 65, 212107 (2002).

    Google Scholar 

  68. Shamai, T. & Selzer, Y. Spectroscopy of molecular junctions. Chem. Soc. Rev. 40, 2293–2305 (2011).

    CAS  Google Scholar 

  69. Feringa, B. L. Molecular Switches (ed. Feringa, B. L.) (Wiley, 2001).

    Google Scholar 

  70. Van der Molen, S. J. & Liljeroth, P. Charge transport through molecular switches. J. Phys. Condens. Matter 22, 133001 (2010).

    Google Scholar 

  71. Morgenstern, K. Switching individual molecules by light and electrons: From isomerisation to chirality flip. Prog. Surface Sci. 86, 115–161 (2011).

    CAS  Google Scholar 

  72. Battacharyya, S. et al. Optical modulation of molecular conductance. Nano Lett. 11, 2709–2714 (2011).

    CAS  Google Scholar 

  73. Lara-Avila, S. et al. Light-triggered conductance switching in single-molecule dihydroazulene/vinylheptafulvene junctions. J. Phys. Chem. C 115, 18372–18377 (2011).

    CAS  Google Scholar 

  74. Daub, J., Knochel, T. & Mannschreck, A. Photosensitive dihydroazulenes with chromogenic properties. Angew. Chem. Int. Ed. Engl. 23, 960–961 (1984).

    Google Scholar 

  75. Banerjee, P. et al. Plasmon-induced electrical conduction in molecular devices. ACS Nano 4, 1019–1025 (2010).

    CAS  Google Scholar 

  76. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    CAS  Google Scholar 

  77. Arielly, R., Ofarim, A., Noy, G. & Selzer, Y. Accurate determination of plasmonic fields in molecular junctions by current rectification at optical frequencies. Nano Lett. 11, 2968–2972 (2011).

    CAS  Google Scholar 

  78. Ittah, N. & Selzer, Y. Electrical detection of surface plasmon polaritons by 1G0 gold quantum point contacts. Nano Lett. 11, 529–534 (2011).

    CAS  Google Scholar 

  79. Savage, K. J. et al. Revealing the quantum regime in tunnelling plasmonics. Nature 491, 574–577 (2012).

    CAS  Google Scholar 

  80. Majumdar, A. Thermoelectricity in semiconductor nanostructures. Science 303, 777–778 (2004).

    CAS  Google Scholar 

  81. Venkatasubramanian, R., Siivola, E., Colpitts, T. & O'Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001).

    CAS  Google Scholar 

  82. Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008).

    CAS  Google Scholar 

  83. Dubi, Y. & Di Ventra, M. Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 131–155 (2011).

    CAS  Google Scholar 

  84. Paulsson, M. & Datta, S. Thermoelectric effect in molecular electronics. Phys. Rev. B 67, 241403 (2003).

    Google Scholar 

  85. Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, 1995).

    Google Scholar 

  86. Park, Y. S. et al. Contact chemistry and single-molecule conductance: A comparison of phosphines, methyl sulfides, and amines. J. Am. Chem. Soc. 129, 15768–15769 (2007).

    CAS  Google Scholar 

  87. Martin, C. A. et al. Fullerene-based anchoring groups for molecular electronics. J. Am. Chem. Soc. 130, 13198–13199 (2008).

    CAS  Google Scholar 

  88. Schneebeli, S. T. et al. Single-molecule conductance through multiple π−π-stacked benzene rings determined with direct electrode-to-benzene ring connections. J. Am. Chem. Soc. 133, 2136–2139 (2011).

    CAS  Google Scholar 

  89. Mishchenko, A. et al. Single-molecule junctions based on nitrile-terminated biphenyls: A promising new anchoring group. J. Am. Chem. Soc. 133, 184–187 (2011).

    CAS  Google Scholar 

  90. Ludoph, B. & van Ruitenbeek, J. M. Thermopower of atomic-size metallic contacts. Phys. Rev. B 59, 12290–12293 (1999).

    CAS  Google Scholar 

  91. Reddy, P., Jang, S. Y., Segalman, R. A. & Majumdar, A. Thermoelectricity in molecular junctions. Science 315, 1568–1571 (2007). This article described the first measurement of thermopower in molecular junctions.

    CAS  Google Scholar 

  92. Widawsky, J. R., Darancet, P., Neaton, J. B. & Venkataraman, L. Simultaneous determination of conductance and thermopower of single molecule junctions. Nano Lett. 12, 354–358 (2012).

    CAS  Google Scholar 

  93. Malen, J. A. et al. Identifying the length dependence of orbital alignment and contact coupling in molecular heterojunctions. Nano Lett. 9, 1164–1169 (2009).

    CAS  Google Scholar 

  94. Baheti, K. et al. Probing the chemistry of molecular heterojunctions using thermoelectricity. Nano Lett. 8, 715–719 (2008).

    CAS  Google Scholar 

  95. Malen, J. A., Yee, S. K., Majumdar, A. & Segalman, R. A. Fundamentals of energy transport, energy conversion, and thermal properties in organic–inorganic heterojunctions. Chem. Phys. Lett. 491, 109–122 (2010).

    CAS  Google Scholar 

  96. Sanvito, S. Molecular spintronics. Chem. Soc. Rev. 40, 3336–3355 (2011).

    CAS  Google Scholar 

  97. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    CAS  Google Scholar 

  98. Liang, W. J., Shores, M. P., Bockrath, M., Long, J. R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002).

    CAS  Google Scholar 

  99. Scott, G. D. & Natelson, D. Kondo resonances in molecular devices. ACS Nano 4, 3560–3579 (2010).

    CAS  Google Scholar 

  100. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nature Mater. 7, 179–186 (2008).

    CAS  Google Scholar 

  101. Heersche, H. B. et al. Electron transport through single Mn12 molecular magnets. Phys. Rev. Lett. 96, 206801 (2006).

    CAS  Google Scholar 

  102. Jo, M. H. et al. Signatures of molecular magnetism in single-molecule transport spectroscopy. Nano Lett. 6, 2014–2020 (2006).

    CAS  Google Scholar 

  103. Zyazin, A. S. et al. Electric field controlled magnetic anisotropy in a single molecule. Nano Lett. 10, 3307–3311 (2010).

    CAS  Google Scholar 

  104. Osorio, E. A. et al. Electrical manipulation of spin states in a single electrostatically gated transition-metal complex. Nano Lett. 10, 105–110 (2010).

    CAS  Google Scholar 

  105. Schmaus, S. et al. Giant magnetoresistance through a single molecule. Nature Nanotech. 6, 185–189 (2011).

    CAS  Google Scholar 

  106. Kawahara, S. L. et al. Large magnetoresistance through a single molecule due to a spin-split hybridized orbital. Nano Lett. 12, 4558–4563 (2012).

    CAS  Google Scholar 

  107. Iacovita, C. et al. Visualizing the spin of individual cobalt-phthalocyanine molecules. Phys. Rev. Lett. 101, 116602 (2008). This article presented the first spin-polarized STM measurements showing that a molecule can act as a featureless scatterer or as a spin filter.

    CAS  Google Scholar 

  108. Brede, J. et al. Spin- and energy-dependent tunneling through a single molecule with intramolecular spatial resolution. Phys. Rev. Lett. 105, 047204 (2010).

    Google Scholar 

  109. Schwobel, J. et al. Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets. Nature Commun. 3, 953 (2012).

    Google Scholar 

  110. Vincent, R., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Balestro, F. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357–360 (2012). This article was the first to demonstrate the use of an electronic signal to read out the nuclear spin state in a single-molecule device.

    CAS  Google Scholar 

  111. Webb, R. A., Washburn, S., Umbach, C. P. & Laibowitz, R. B. Observation of h/e Aharonov–Bohm oscillations in normal-metal rings. Phys. Rev. Lett. 54, 2696–2699 (1985).

    CAS  Google Scholar 

  112. Hammett, L. P. The effect of structure upon the reactions of organic compounds benzene derivatives. J. Am. Chem. Soc. 59, 96–103 (1937).

    CAS  Google Scholar 

  113. Sautet, P. & Joachim, C. Electronic interference produced by a benzene embedded in a polyacetylene chain. Chem. Phys. Lett. 153, 511–516 (1988).

    CAS  Google Scholar 

  114. Baer, R. & Neuhauser, D. Phase coherent electronics: A molecular switch based on quantum interference. J. Am. Chem. Soc. 124, 4200–4201 (2002).

    CAS  Google Scholar 

  115. Cardamone, D. M., Stafford, C. A. & Mazumdar, S. Controlling quantum transport through a single molecule. Nano Lett. 6, 2422–2426 (2006).

    CAS  Google Scholar 

  116. Ke, S. H., Yang, W. T. & Baranger, H. U. Quantum-interference-controlled molecular electronics. Nano Lett. 8, 3257–3261 (2008).

    CAS  Google Scholar 

  117. Markussen, T., Stadler, R. & Thygesen, K. S. The relation between structure and quantum interference in single molecule junctions. Nano Lett. 10, 4260–4265 (2010).

    CAS  Google Scholar 

  118. Stadler, R., Forshaw, M. & Joachim, C. Modulation of electron transmission for molecular data storage. Nanotechnology 14, 138–142 (2003).

    CAS  Google Scholar 

  119. Magoga, M. & Joachim, C. Conductance of molecular wires connected or bonded in parallel. Phys. Rev. B 59, 16011 (1999).

    CAS  Google Scholar 

  120. Solomon, G. C., Herrmann, C., Hansen, T., Mujica, V. & Ratner, M. A. Exploring local currents in molecular junctions. Nature Chem. 2, 223–228 (2010).

    CAS  Google Scholar 

  121. Cui, X. D. et al. Reproducible measurement of single-molecule conductivity. Science 294, 571–574 (2001).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Jonathan Widawsky, Taekyeong Kim and Brian Capozzi for discussions. This work was supported by the National Science Foundation (Career CHE-07-44185) and by the Packard Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latha Venkataraman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aradhya, S., Venkataraman, L. Single-molecule junctions beyond electronic transport. Nature Nanotech 8, 399–410 (2013). https://doi.org/10.1038/nnano.2013.91

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.91

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing