Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of quantum interference in molecular charge transport

Abstract

As the dimensions of a conductor approach the nanoscale, quantum effects begin to dominate, and it becomes possible to control the conductance through direct manipulation of the electron wavefunction. Such control has been demonstrated in various mesoscopic devices at cryogenic temperatures1,2,3,4, but it has proved to be difficult to exert control over the wavefunction at higher temperatures. Molecules have typical energy level spacings (eV) that are much larger than the thermal energy at 300 K (25 meV), and are therefore natural candidates for such experiments. Previously, phenomena such as giant magnetoresistance5, Kondo effects6 and conductance switching7,8,9,10,11 have been observed in single molecules, and theorists have predicted that it should also be possible to observe quantum interference in molecular conductors12,13,14,15,16,17,18, but until now all the evidence for such behaviour has been indirect. Here, we report the observation of destructive quantum interference in charge transport through two-terminal molecular junctions at room temperature. We studied five different rigid π-conjugated molecular wires, all of which form self-assembled monolayers on a gold surface, and find that the degree of interference can be controlled by simple chemical modifications of the molecular wire.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conductance measurements on molecular wires.
Figure 2: Origin of interference in cross-conjugated molecules.
Figure 3: Two-dimensional conductance histograms.
Figure 4: Calculated dI/d V curves for AQ-MT and OPE3-MT.

Similar content being viewed by others

References

  1. Webb, R. A., Washburn, S., Umbach, C. P. & Laibowitz, R. B. Observation of h/e Aharonov–Bohm oscillations in normal-metal rings. Phys. Rev. Lett. 54, 2696–2699 (1985).

    Article  CAS  Google Scholar 

  2. van Wees, B. J. et al. Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848–850 (1988).

    Article  CAS  Google Scholar 

  3. Wharam, D. A. et al. One-dimensional transport and the quantisation of the ballistic resistance. J. Phys. C 21, L209–L214 (1988).

    Article  Google Scholar 

  4. Beenakker, C. W. J. & van Houten, H. Quantum transport in semiconductor nanostructures. Solid State Phys. 44, 1–228 (1991).

    Article  Google Scholar 

  5. Schmaus, S. et al. Giant magnetoresistance through a single molecule. Nature Nanotech. 6, 185–189 (2011).

    Article  CAS  Google Scholar 

  6. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    Article  CAS  Google Scholar 

  7. Smit, R. H. M. et al. Measurement of the conductance of a hydrogen molecule. Nature 419, 906–909 (2002).

    Article  CAS  Google Scholar 

  8. Kubatkin, S. et al. Single-electron transistor of a single organic molecule with access to several redox states. Nature 425, 698–701 (2003).

    Article  CAS  Google Scholar 

  9. Venkataraman, L. et al. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006).

    Article  CAS  Google Scholar 

  10. Mishchenko, A. et al. Influence of conformation on conductance of biphenyl-dithiol single-molecule contacts. Nano Lett. 10, 156–163 (2010).

    Article  CAS  Google Scholar 

  11. Van der Molen, S. J. & Liljeroth, P. Charge transport through molecular switches. J. Phys. Condens. Matter 22, 133001 (2010).

    Article  Google Scholar 

  12. Sautet, P. & Joachim, C. Electronic interference produced by a benzene embedded in a polyacetylene chain. Chem. Phys. Lett. 153, 511–516 (1988).

    Article  CAS  Google Scholar 

  13. Andrews, D. Q., Solomon, G. C., Van Duyne, R. P. & Ratner, M. A. Single molecule electronics: increasing dynamic range and switching speed using cross-conjugated species. J. Am. Chem. Soc. 130, 17309–17319 (2008).

    Article  CAS  Google Scholar 

  14. Stafford, C. A., Cardamone, D. M. & Mazumdar, S. The quantum interference effect transistor. Nanotechnology 18, 424014 (2007).

    Article  Google Scholar 

  15. Ernzerhof, M., Zhuang, M. & Rocheleau, P. Side-chain effects in molecular electronic devices. J. Chem. Phys. 123, 134704 (2005).

    Article  Google Scholar 

  16. Markussen, T., Stadler, R. & Thygesen, K. S. The relation between structure and quantum interference in single molecule junctions. Nano Lett. 10, 4260–4265 (2010).

    Article  CAS  Google Scholar 

  17. Markussen, T., Schiotz, J. & Thygesen, K. S. Electrochemical control of quantum interference in anthraquinone-based molecular switches. J. Chem. Phys. 132, 224104 (2010).

    Article  Google Scholar 

  18. Solomon, G. C., Herrmann, C., Hansen, T., Mujica, V. & Ratner, M. A. Exploring local currents in molecular junctions. Nature Chem. 2, 223–228 (2010).

    Article  CAS  Google Scholar 

  19. Yaliraki, S. & Ratner, M. Interplay of topology and chemical stability on the electronic transport of molecular junctions. Ann. NY Acad. Sci. 960, 153–162 (2002).

    Article  CAS  Google Scholar 

  20. Patoux, C., Coudret, C., Launay, J. P., Joachim, C. & Gourdon, A. Topological effects on intramolecular electron transfer via quantum interference. Inorg. Chem. 36, 5037–5049 (1997).

    Article  CAS  Google Scholar 

  21. Ricks, A. B. et al. Controlling electron transfer in donor-bridge-acceptor molecules using cross-conjugated bridges. J. Am. Chem. Soc. 132, 15427–15434 (2010).

    Article  CAS  Google Scholar 

  22. Mayor, M. et al. Electric current through a molecular rod—relevance of the position of the anchor groups. Angew. Chem. Int. Ed. 42, 5834–5838 (2003).

    Article  CAS  Google Scholar 

  23. Fracasso, D., Valkenier, H., Hummelen, J. C., Solomon, G. C. & Chiechi, R. C. Evidence for quantum interference in SAMs of arylethynylene thiolates in tunneling junctions with eutectic GaIn (EGaIn) top-contacts. J. Am. Chem. Soc. 133, 9556–9563 (2011).

    Article  CAS  Google Scholar 

  24. Hong, W. et al. An MCBJ case study: the influence of π-conjugation on the single-molecule conductance at a solid/liquid interface. Beilstein J. Nanotechnol. 2, 699–713 (2011).

    Article  Google Scholar 

  25. Van Dijk, E. H., Myles, D. J. T., van der Veen, M. H. & Hummelen, J. C. Synthesis and properties of an anthraquinone-based redox switch for molecular electronics. Org. Lett. 8, 2333–2336 (2006).

    Article  CAS  Google Scholar 

  26. Valkenier, H. et al. Formation of high-quality self-assembled monolayers of conjugated dithiols on gold: base matters. J. Am. Chem. Soc. 133, 4930–4939 (2011).

    Article  CAS  Google Scholar 

  27. Wold, D. J. & Frisbie, C. D. Fabrication and characterization of metal–molecule–metal junctions by conducting probe atomic force microscopy. J. Am. Chem. Soc. 123, 5549–5556 (2001).

    Article  CAS  Google Scholar 

  28. Gonzalez, M. T. et al. Electrical conductance of molecular junctions by a robust statistical analysis. Nano Lett. 6, 2238–2242 (2006).

    Article  CAS  Google Scholar 

  29. Bergfield, J. P. & Stafford, C. A. Thermoelectric signatures of coherent transport in single-molecule heterojunctions. Nano Lett. 9, 3072–3076 (2009).

    Article  CAS  Google Scholar 

  30. Quek, S. Y., Choi, H. J., Louie, S. G. & Neaton, J. B. Length dependence of conductance in aromatic single-molecule junctions. Nano Lett. 9, 3949–3953 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank T. Oosterkamp and F. Galli for making their equipment and expertise available, J. van Ruitenbeek and M. Trouwborst for discussions and D. Myles for his initial synthetic efforts. This study was financed by a VIDI grant (to S.J.vdM.) from the Netherlands Organization for Scientific Research (NWO), by the Dutch Ministry of Economic Affairs via NanoNed (to H.V., project GMM.6973), by the FTP (grant no. 11-104592 to T.M.) and The Sapere Aude program under the Danish Council for Independent Research (grant no. 11-105139 to K.S.T.).

Author information

Authors and Affiliations

Authors

Contributions

C.M.G., H.V. and S.J.vdM. performed AFM measurements and carried out data analysis. H.V. and J.C.H. designed and synthesized the molecules, and made and characterized the SAMs. T.M. and K.S.T. performed the calculations. C.M.G., H.V., J.C.H. and S.J.vdM. designed the experiment. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Sense Jan van der Molen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 35457 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guédon, C., Valkenier, H., Markussen, T. et al. Observation of quantum interference in molecular charge transport. Nature Nanotech 7, 305–309 (2012). https://doi.org/10.1038/nnano.2012.37

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.37

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing