Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness

Abstract

The use of nanoparticles in medicine is ever increasing, and it is important to understand their targeted and non-targeted effects. We have previously shown that nanoparticles can cause DNA damage to cells cultured below a cellular barrier without crossing this barrier. Here, we show that this indirect DNA damage depends on the thickness of the cellular barrier, and it is mediated by signalling through gap junction proteins following the generation of mitochondrial free radicals. Indirect damage was seen across both trophoblast and corneal barriers. Signalling, including cytokine release, occurred only across bilayer and multilayer barriers, but not across monolayer barriers. Indirect toxicity was also observed in mice and using ex vivo explants of the human placenta. If the importance of barrier thickness in signalling is a general feature for all types of barriers, our results may offer a principle with which to limit the adverse effects of nanoparticle exposure and offer new therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signalling varies with thickness of BeWo barrier.
Figure 2: Oxidative stress, mitochondrial ROS or changes in oxygen level lead to DNA-damaging signalling from bilayered but not predominantly monolayered BeWo barriers.
Figure 3: Changes in BeWo barriers after nanoparticle exposure.
Figure 4: DNA damage in human embryonic stem cells below nanoparticle-exposed BeWo barriers.
Figure 5: DNA damage, in vivo and ex vivo, across bilayered but not monolayered barriers.
Figure 6: Signalling occurs through a bilayered but not monolayered corneal barrier.

Similar content being viewed by others

References

  1. The Project on Emerging Nanotechnologies. The Nanotechnology Consumer Products Inventory (Woodrow Wilson International Center for Scholars, 2008); available at http://www.nanotechproject.org/inventories/consumer.

  2. Aitken, R. J., Chaudhry, M. Q., Boxall, A. B. A. & Hull, M. Manufacture and use of nanomaterials: current status in the UK and global trends. Occup. Med. 56, 300–306 (2006).

    Article  CAS  Google Scholar 

  3. Xia, T., Li, N. & Nel, A. E. Potential health impact of nanoparticles. Annu. Rev. Public Health 30, 137–150 (2009).

    Article  Google Scholar 

  4. Shvedova, A. A., Kagan, V. E. & Fadeel, B. Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu. Rev. Pharmacol. Toxicol. 50, 63–88 (2010).

    Article  CAS  Google Scholar 

  5. Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R. & Begley, D. J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 37, 13–25 (2010).

    Article  CAS  Google Scholar 

  6. Huppertz, B. The anatomy of the normal placenta. J. Clin. Pathol. 61, 1296–1302 (2008).

    Article  CAS  Google Scholar 

  7. Kibschull, M., Gellhaus, A. & Winterhager, E. Analogous and unique functions of connexins in mouse and human placental development. Placenta 29, 848–854 (2008).

    Article  CAS  Google Scholar 

  8. Aplin, J. D., Jones, C. J. & Harris, L. K. Adhesion molecules in human trophoblast—a review. 1. Villous trophoblast. Placenta 30, 293–298 (2009).

    Article  CAS  Google Scholar 

  9. Bhabra, G. et al. Nanoparticles can cause DNA damage across a cellular barrier. Nature Nanotech. 4, 876–883 (2009).

    Article  CAS  Google Scholar 

  10. Parry, M. C. et al. Thresholds for indirect DNA damage across cellular barriers for orthopaedic biomaterials. Biomaterials 31, 4477–4483 (2010).

    Article  CAS  Google Scholar 

  11. Smith, R. A. & Murphy, M. P. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann. NY Acad. Sci. 1201, 96–103 (2010).

    Article  CAS  Google Scholar 

  12. Evans, W. H., De Vuyst, E. & Leybaert, L. The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem. J. 397, 1–14 (2006).

    Article  CAS  Google Scholar 

  13. Evans, W. H. & Leybaert, L. Mimetic peptides as blockers of connexin channel-facilitated intercellular communication. Cell Commun. Adhes. 14, 265–273 (2007).

    Article  CAS  Google Scholar 

  14. Mothersill, C. & Seymour, C. B. Radiation-induced bystander effects and the DNA paradigm: an ‘out of field’ perspective. Mutat. Res. 597, 5–10 (2006).

    Article  CAS  Google Scholar 

  15. Cogan, N. et al. DNA damaging bystander signalling from stem cells, cancer cells and fibroblasts after Cr(VI) exposure and its dependence on telomerase. Mutat. Res. 683, 1–8 (2010).

    Article  CAS  Google Scholar 

  16. Chen, S. et al. Mitochondria-dependent signalling pathway are involved in the early process of radiation-induced bystander effects. Br. J. Cancer 98, 1839–1844 (2008).

    Article  CAS  Google Scholar 

  17. Gebicki, J. M. et al. Reduction of protein radicals by GSH and ascorbate: potential biological significance. Amino Acids 39, 1131–1137 (2010).

    Article  CAS  Google Scholar 

  18. Hamanaka, R. B. & Chandel, N. S. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 35, 505–513 (2010).

    Article  CAS  Google Scholar 

  19. Murphy, E. & Steenbergen, C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol. Rev. 88, 581–609 (2008).

    Article  CAS  Google Scholar 

  20. Ghandhi, S. A., Ming, L., Ivanov, V. N., Hei, T. K. & Amundson, S. A. Regulation of early signaling and gene expression in the alpha-particle and bystander response of IMR-90 human fibroblasts. BMC Med. Genomics 3, 31 (2010).

    Article  Google Scholar 

  21. Ivanov, V. N. et al. Radiation-induced bystander signaling pathways in human fibroblasts: a role for interleukin-33 in the signal transmission. Cell Signal. 22, 1076–1087 (2010).

    Article  CAS  Google Scholar 

  22. Dayan, F. et al. Activation of HIF-1alpha in exponentially growing cells via hypoxic stimulation is independent of the Akt/mTOR pathway. J. Cell Physiol. 218, 167–174 (2009).

    Article  CAS  Google Scholar 

  23. Arsham, A. M., Plas, D. R., Thompson, C. B. & Simon, M. C. Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxic stabilization of HIF-1 alpha nor sufficient for HIF-1-dependent target gene transcription. J. Biol. Chem. 277, 15162–15170 (2002).

    Article  CAS  Google Scholar 

  24. Asur, R., Balasubramaniam, M., Marples, B., Thomas, R. A. & Tucker, J. D. Involvement of MAPK proteins in bystander effects induced by chemicals and ionizing radiation. Mutat. Res. 686, 15–29 (2010).

    Article  CAS  Google Scholar 

  25. Yao, K., Ye, P. P., Tan, J., Tang, X. J. & Shen Tu, X. C. Involvement of PI3K/Akt pathway in TGF-beta2-mediated epithelial mesenchymal transition in human lens epithelial cells. Ophthalmic Res. 40, 69–76 (2008).

    Article  CAS  Google Scholar 

  26. Hwang, J. W., Jung, J. W., Lee, Y. S. & Kang, K. S. Indole-3-carbinol prevents H(2)O(2)-induced inhibition of gap junctional intercellular communication by inactivation of PKB/Akt. J. Vet. Med. Sci. 70, 1057–1063 (2008).

    Article  CAS  Google Scholar 

  27. Ito, S. et al. PI3K/Akt signaling is involved in the disruption of gap junctional communication caused by v-Src and TNF-. Biochem. Biophys. Res. Commun. 400, 230–235 (2010).

    Article  CAS  Google Scholar 

  28. Cronier, L. et al. Requirement of gap junctional intercellular communication for human villous trophoblast differentiation. Biol. Reprod. 69, 1472–1480 (2003).

    Article  CAS  Google Scholar 

  29. Frendo, J. L. et al. Involvement of connexin 43 in human trophoblast cell fusion and differentiation. J. Cell Sci. 116, 3413–3421 (2003).

    Article  CAS  Google Scholar 

  30. Mayhew, T. M. Villous trophoblast of human placenta: a coherent view of its turnover, repair and contributions to villous development and maturation. Histol. Histopathol. 16, 1213–1224 (2001).

    CAS  Google Scholar 

  31. Malassiné, A. & Cronier, L. Involvement of gap junctions in placental functions and development. Biochim. Biophys. Acta 1719, 117–124 (2005).

    Article  Google Scholar 

  32. Warrell, D. A., Cox, T. M., Firth, J. D. & Benz, E. J. Jr. Oxford Textbook of Medicine (Oxford Univ. Press, 2009).

  33. Simmons, D. G. et al. Early patterning of the chorion leads to the trilaminar trophoblast cell structure in the placental labyrinth. Development 135, 2083–2091 (2008).

    Article  CAS  Google Scholar 

  34. Yamashita, K. et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nature Nanotech. 6, 321–328 (2011).

    Article  CAS  Google Scholar 

  35. Keelan, J. A. Nanotoxicology: nanoparticles versus the placenta. Nature Nanotech. 6, 263–264 (2011).

    Article  CAS  Google Scholar 

  36. Case, C. P. et al. Widespread dissemination of metal debris from implants. J. Bone Joint Surg. Br. 76, 701–712 (1994).

    Article  CAS  Google Scholar 

  37. Hornof, M., Toropainen, E. & Urtti, A. Cell culture models of the ocular barriers. Eur. J. Pharm. Biopharm. 60, 207–225 (2005).

    Article  CAS  Google Scholar 

  38. Reichl, S. Cell culture models of the human cornea—a comparative evaluation of their usefulness to determine ocular drug absorption in-vitro. J. Pharm. Pharmacol. 60, 299–307 (2008).

    Article  CAS  Google Scholar 

  39. Baird, D. M., Rowson, J., Wynford-Thomas, D. & Kipling, D. Extensive allelic variation and ultrashort telomeres in senescent human cells. Nature Genet. 33, 203–207 (2003).

    Article  CAS  Google Scholar 

  40. Freund, A., Orjalo, A. V., Desprez, P. Y. & Campisi, J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med. 16, 238–246 (2010).

    Article  CAS  Google Scholar 

  41. Davy, P., Nagata, M., Bullard, P., Fogelson, N. S. & Allsopp, R. Fetal growth restriction is associated with accelerated telomere shortening and increased expression of cell senescence markers in the placenta. Placenta 6, 539–542 (2009).

    Article  Google Scholar 

  42. Biron-Shental, T. et al. Short telomeres may play a role in placental dysfunction in preeclampsia and intrauterine growth restriction. Am. J. Obstet. Gynecol. 202, 381.e1-7 (2010).

    Article  Google Scholar 

  43. James, J. L., Whitley, G. S. & Cartwright, J. E. Pre-eclampsia: fitting together the placental, immune and cardiovascular pieces. J. Pathol. 221, 363–378 (2010).

    Article  CAS  Google Scholar 

  44. Street, M. E., Volta, C., Ziveri, M. A., Viani, I. & Bernasconi, S. Markers of insulin sensitivity in placentas and cord serum of intrauterine growth-restricted newborns. Clin. Endocrinol. 71, 394–399 (2009).

    Article  CAS  Google Scholar 

  45. Burton, G. J., Yung, H. W., Cindrova-Davies, T. & Charnock-Jones, D. S. Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta 30(Suppl. A), S43–S48 (2009).

    Article  Google Scholar 

  46. Yung, H. W., Charnock-Jones, D. S. & Burton, G. J. Regulation of AKT phosphorylation at Ser473 and Thr308 by endoplasmic reticulum stress modulates substrate specificity in a severity dependent manner. PLoS ONE 6, e17894 (2011).

    Article  CAS  Google Scholar 

  47. Barbaric, I. et al. Novel regulators of stem cell fates identified by a multivariate phenotype screen of small compounds on human embryonic stem cell colonies. Stem Cell Res. 5, 104–119 (2010).

    Article  CAS  Google Scholar 

  48. Olive, P. L., Wlodek, D., Durand, R. E. & Banath, J. P. Factors influencing DNA migration from individual cells subjected to gel electrophoresis. Exp. Cell Res. 198, 259–267 (1992).

    Article  CAS  Google Scholar 

  49. Forbes, K., Baker, P. N., Aplin, J. D. & Westwood, M. IGF-I and -II regulate the life cycle of trophoblast in the developing human placenta. Am. J. Physiol. Cell Physiol. 294, C1313–C1322 (2008).

    Article  CAS  Google Scholar 

  50. Hardin, J. W. & Hilbe, J. M. Generalized Linear Models and Extensions 2nd edn (StataCorp LP, 2007).

Download references

Acknowledgements

Advice and discussion was kindly provided by A. Halestrap (University of Bristol). P.W.A. and P.J.G. acknowledge support from the Wellcome Trust and from the Medical Research Council (project grant). The authors wish to thank O. Beaumont and L. Teoh for their help in calcium imaging experiments.

Author information

Authors and Affiliations

Authors

Contributions

C.P.C., A.S. and S.S. conceived and designed the experiments. A.S., S.S., L.L., B.H., R.G., E.W., D.R., P.G., C.A., K.F., M.W., I.P., M.B., R.J., M.S., D.B., G.L-C., L.C., J.L., K.S., M.L., L.R., H.S., M.B.M., A.R. and H.L. performed the experiments. C.P.C., R.N., D.R., P.G., N.M., J.A., A.R., M.B.M., J.H. and K.S. analysed the data. M.S., W.H.E., I.P. and E.I. contributed materials and analysis tools. C.P.C. wrote the paper.

Corresponding author

Correspondence to C. P. Case.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1328 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sood, A., Salih, S., Roh, D. et al. Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness. Nature Nanotech 6, 824–833 (2011). https://doi.org/10.1038/nnano.2011.188

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing