Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Giant magnetoresistance through a single molecule

Abstract

Magnetoresistance is a change in the resistance of a material system caused by an applied magnetic field. Giant magnetoresistance occurs in structures containing ferromagnetic contacts separated by a metallic non-magnetic spacer, and is now the basis of read heads for hard drives and for new forms of random access memory. Using an insulator (for example, a molecular thin film) rather than a metal as the spacer gives rise to tunnelling magnetoresistance, which typically produces a larger change in resistance for a given magnetic field strength, but also yields higher resistances, which are a disadvantage for real device operation. Here, we demonstrate giant magnetoresistance across a single, non-magnetic hydrogen phthalocyanine molecule contacted by the ferromagnetic tip of a scanning tunnelling microscope. We measure the magnetoresistance to be 60% and the conductance to be 0.26G0, where G0 is the quantum of conductance. Theoretical analysis identifies spin-dependent hybridization of molecular and electrode orbitals as the cause of the large magnetoresistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: H2Pc molecules adsorbed on cobalt islands with different out-of-plane magnetic orientations.
Figure 2: Current–distance traces and magnetoresistance measured across single H2Pc molecules.
Figure 3: Ab initio simulations of current–distance traces and the magnetoresistance effect across a H2Pc molecule.
Figure 4: Molecular orbitals and transmission curves reveal the spin-selective LUMO broadening and the impact on GMR across the H2Pc molecule.

Similar content being viewed by others

References

  1. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  2. Zutic, I., Fabian, J. & Sarma, S. D. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  CAS  Google Scholar 

  3. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  CAS  Google Scholar 

  4. Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    Article  CAS  Google Scholar 

  5. Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. 54A, 225–226 (1975).

    Article  CAS  Google Scholar 

  6. Moodera, J., Kinder, I., Wong, T. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    Article  CAS  Google Scholar 

  7. Xiong, Z., Wu, D., Vardeny, Z. & Shi, J. Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004).

    Article  CAS  Google Scholar 

  8. Barraud, C. et al. Unravelling the role of the interface for spin injection into organic semiconductors. Nature Phys. 6, 615–620 (2010).

    Article  CAS  Google Scholar 

  9. Pople, J. A. & Walmsley, S. H. Bond alternation defects in long polyene molecules. Mol. Phys. 5, 15–20 (1962).

    Article  CAS  Google Scholar 

  10. Boukari, S. et al. Electrical transport across a structurally ordered phthalocyanine film: role of defect states. Phys. Rev. B 76, 033302 (2007).

    Article  Google Scholar 

  11. Bowen, M. et al. Using half-metallic manganite interfaces to reveal insights into spintronics. J. Phys. Condens. Matter 19, 315208 (2007).

    Article  CAS  Google Scholar 

  12. Greullet, F. et al. Evidence of a symmetry-dependent metallic barrier in fully epitaxial MgO based magnetic tunnel junctions. Phys. Rev. Lett. 99, 187202 (2007).

    Article  CAS  Google Scholar 

  13. Santos, T. et al. Room temperature tunnel magnetoresistance and spin polarized tunneling studies with organic semiconductor barrier. Phys. Rev. Lett. 98, 016601 (2007).

    Article  CAS  Google Scholar 

  14. Szulczewski, G., Tokuc, H., Oguz, K. & Coey, J. M. D. Magnetoresistance in magnetic tunnel junctions with an organic barrier and an MgO spin filter. Appl. Phys. Lett. 95, 202506 (2009).

    Article  Google Scholar 

  15. Nagamine, Y. et al. Ultralow resistance–area product of 0.4 Ω (μm)2 and high magnetoresistance above 50% in CoFeB/MgO/CoFeB magnetic tunnel junction. Appl. Phys. Lett. 89, 162507 (2006).

    Article  Google Scholar 

  16. Fukuzawa, H., Yuasa, H., Hashimoto, S., Iwasaki, H. & Tanaka, Y. Large magnetoresistance ratio of 10% by Fe50Co50 layers for current-confined path current-perpendicular-to-plane giant magnetoresistance spin-valve films. Appl. Phys. Lett. 87, 082507 (2005).

    Article  Google Scholar 

  17. Elbing, M. et al. A single molecule diode. Proc. Natl Acad. Sci. USA 102, 8815–8820 (2005).

    Article  CAS  Google Scholar 

  18. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    Article  CAS  Google Scholar 

  19. Osorio, E. A., Bjørnholm, T., Lehn, J.-M., Ruben, M. & van der Zant, H. S. J. Single-molecule transport in three-terminal devices. J. Phys. Condens. Matter 20, 374121 (2008).

    Article  CAS  Google Scholar 

  20. Yu, L. H. et al. Kondo resonances and anomalous gate dependence in the electrical conductivity of single-molecule transistors. Phys. Rev. Lett. 95, 256803 (2005).

    Article  CAS  Google Scholar 

  21. Javaid, S. et al. Impact on interface spin polarization of molecular bonding to metallic surfaces. Phys. Rev. Lett. 105, 077201 (2010).

    Article  CAS  Google Scholar 

  22. Takács, A. F. et al. Electron transport through single phthalocyanine molecules studied using scanning tunneling microscopy. Phys. Rev. B 78, 233404 (2008).

    Article  Google Scholar 

  23. Wende, H. et al. Substrate-induced magnetic ordering and switching of iron porphyrin molecules. Nat. Mater. 6, 516–520 (2007).

    Article  CAS  Google Scholar 

  24. Iacovita, C. et al. Visualizing the spin of indivitual cobalt–phthalocyanine molecules. Phys. Rev. Lett. 101, 116602 (2009).

    Article  Google Scholar 

  25. Joachim, C., Gimzewski, J. K., Schlittler, R. R. & Chavy, C. Electronic transparence of a single C60 molecule. Phys. Rev. Lett. 74, 2102–2105 (1995).

    Article  CAS  Google Scholar 

  26. Haiss, W. et al. Precision control of single-molecule electrical junctions. Nat. Mater. 5, 995–1002 (2006).

    Article  CAS  Google Scholar 

  27. Néel, N. et al. Controlled contact to a C60 molecule. Phys. Rev. Lett. 98, 065502 (2007).

    Article  Google Scholar 

  28. Venkataraman, L. et al. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006).

    Article  CAS  Google Scholar 

  29. Li, Z. et al. Conductance of redox-active single molecular junctions: an electrochemical approach. Nanotechnology 18, 044018 (2007).

    Article  Google Scholar 

  30. Balashov, T., Takács, A. F., Wulfhekel, W. & Kirschner, J. Magnon excitation with spin-polarized scanning tunneling microscopy. Phys. Rev. Lett. 97, 187201 (2006).

    Article  CAS  Google Scholar 

  31. Kuch, W. et al. Magnetic dichroism study of the valence-band structure of perpendicularly magnetized Co/Cu(111). Phys. Rev. B 57, 5340–5346 (1998).

    Article  CAS  Google Scholar 

  32. Pietzsch, O., Kubetzka, A., Bode, M. & Wiesendanger, R. Spin-polarized scanning tunneling spectroscopy of nanoscale cobalt islands on Cu(111). Phys. Rev. Lett. 92, 057202 (2004).

    Article  CAS  Google Scholar 

  33. Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985).

    Article  CAS  Google Scholar 

  34. Diekhöner, L. et al. Surface states of cobalt nanoislands on Cu(111). Phys. Rev. Lett. 90, 236801 (2003).

    Article  Google Scholar 

  35. Lippel, P. H., Wilson, R. J., Miller, M. D., Wöll, C. & Chiang, S. High-resolution imaging of copper–phthalocyanine by scanning-tunneling microscopy. Phys. Rev. Lett. 62, 171–174 (1989).

    Article  CAS  Google Scholar 

  36. Atodiresei, N. et al. Design of the local spin polarization at the organic-ferromagnetic interface. Phys. Rev. Lett. 105, 066601 (2010).

    Article  Google Scholar 

  37. Moresco, F. Manipulation of large molecules by low-temperature STM: model systems for molecular electronics. Phys. Rep. 399, 175–225 (2004).

    Article  CAS  Google Scholar 

  38. Temirov, R., Lassise, A., Anders, F. B. & Tautz, F. S. Kondo effect by controlled cleavage of a single-molecule contact. Nanotechnology 19, 065401 (2008).

    Article  CAS  Google Scholar 

  39. Joachim, C., Gimzewski, J. K., Schlittler, R. R. & Chavy, C. Electronic transparence of a single C60 molecule. Phys. Rev. Lett. 74, 2102–2105 (1995).

    Article  CAS  Google Scholar 

  40. Oka, H. et al. Spin-dependent quantum interference within a single magnetic nanostructure. Science 327, 843–846 (2010).

    Article  CAS  Google Scholar 

  41. Arnold, A., Weigend, F. & Evers, F. Quantum chemistry calculations for molecules coupled to reservoirs: formalism, implementation and application to benzene–dithiol. J. Chem. Phys. 126, 174101 (2007).

    Article  CAS  Google Scholar 

  42. Heinrich, B. W. et al. Direct observation of the tunnelling channels of a chemisorbed molecule. Phys. Chem. Lett. 1, 1517–1523 (2010).

    Article  CAS  Google Scholar 

  43. Rosa, A. & Baerends, E. J. Origin and relevance of the staggering in one-dimensional molecular metals. A density functional study of metallophthalocyanine model dimers. Inorg. Chem. 31, 4717–4726 (1992).

    Article  CAS  Google Scholar 

  44. Rosa, A., Ricciardi, G., Baerends, E. J. & van Gisbergen S. J. A. The optical spectra of NiP, NiPz, NiTBP, and NiPc: electronic effects of meso-tetraaza substitution and tetrabenzo annulation. J. Phys. Chem. A 105, 3311–3327 (2001).

    Article  CAS  Google Scholar 

  45. Brede, J. et al. Spin- and energy-dependent tunneling through a single molecule with intramolecular spatial resolution. Phys. Rev. Lett. 105, 047204 (2010).

    Article  Google Scholar 

  46. Breit, G. & Wigner, E. Capture of slow neutrons. Phys. Rev. B 49, 519–531 (1936).

    Article  CAS  Google Scholar 

  47. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comp. Chem. 27, 1787–1799 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank O. Hampe, J. Kortus, K. Fink, S. Boukari, Xi Chen, M. Alouani, R. Mattana, J. van Ruitenbeek and P. Seneor for useful communications. The authors also acknowledge support from the Deutsche Forschungsgemeinschaft (WU 349/3-1 and SPP1243), the Center for Functional Nanostructures, the French–German University, the Alexander von Humboldt foundation, and the Agence Nationale de la Recherche (ANR-06-NANO-033-01) as well as from the Yamada Science Foundation and the Asahi Glass Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.S. and W.W. conceived and designed the experiments. S.S., Y.N., T.K.Y. and An.B. performed the experiments. S.S., Y.N. and An.B. analysed the data. Al.B. and F.E. designed and performed the calculations. M.B. and E.B. provided purified molecules. S.S., Al.B., T.K.Y., F.E., M.B., E.B. and W.W. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Wulf Wulfhekel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 497 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmaus, S., Bagrets, A., Nahas, Y. et al. Giant magnetoresistance through a single molecule. Nature Nanotech 6, 185–189 (2011). https://doi.org/10.1038/nnano.2011.11

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.11

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing