Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility

Abstract

Soluble carbon nanotubes show promise as materials for in vivo delivery and imaging applications. Several reports have described the in vivo toxicity of carbon nanotubes, but their effects on male reproduction have not been examined. Here, we show that repeated intravenous injections of water-soluble multiwalled carbon nanotubes into male mice can cause reversible testis damage without affecting fertility. Nanotubes accumulated in the testes, generated oxidative stress and decreased the thickness of the seminiferous epithelium in the testis at day 15, but the damage was repaired at 60 and 90 days. The quantity, quality and integrity of the sperm and the levels of three major sex hormones were not significantly affected throughout the 90-day period. The fertility of treated male mice was unaffected; the pregnancy rate and delivery success of female mice that mated with the treated male mice did not differ from those that mated with untreated male mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Treatment of BALB/c mice with multiwalled carbon nanotubes (MWNT).
Figure 2: Pathologic and morphometric analysis of testes treated with MWCNTs.
Figure 3: MDA levels in testes homogenate and sex hormone levels in blood.
Figure 4: Sperm concentration, motility, morphology and acrosome integrity.

Similar content being viewed by others

References

  1. Lacerda, L., Bianco, A., Prato, M. & Kostarelos, K. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Deliv. Rev. 58, 1460–1470 (2006).

    Article  CAS  Google Scholar 

  2. Liu, Z. et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotech. 2, 47–52 (2007).

    Article  CAS  Google Scholar 

  3. Usui, Y. et al. Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects. Small 4, 240–246 (2008).

    Article  CAS  Google Scholar 

  4. Chen, J. Y. et al. Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J. Am. Chem. Soc. 130, 16778–16785 (2008).

    Article  CAS  Google Scholar 

  5. Singh, R. et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl Acad. Sci. USA 103, 3357–3362 (2006).

    Article  CAS  Google Scholar 

  6. Yang, S. T. et al. Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol. Lett. 181, 182–189 (2008).

    Article  CAS  Google Scholar 

  7. Manna, S. K. et al. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappa B in human keratinocytes. Nano Lett. 5, 1676–1684 (2005).

    Article  CAS  Google Scholar 

  8. Shvedova, A. A. et al. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress and mutagenesis. Am. J. Physiol. Lung Cell. Mol. Physiol. 295, 552–565 (2008).

    Article  CAS  Google Scholar 

  9. Ravichandran, P. et al. Induction of apoptosis in rat lung epithelial cells by multiwalled carbon nanotubes. J. Biochem. Mol. Toxicol. 23, 333–344 (2009).

    Article  CAS  Google Scholar 

  10. Bottini, M. et al. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol. Lett. 160, 121–126 (2006).

    Article  CAS  Google Scholar 

  11. Warheit, D. B. et al. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 77, 117–125 (2004).

    Article  CAS  Google Scholar 

  12. Li, Z. et al. Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ. Health Perspect. 115, 377–382 (2007).

    Article  CAS  Google Scholar 

  13. Shvedova, A. A. et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 289, 698–708 (2005).

    Article  CAS  Google Scholar 

  14. Ma-Hock, L. et al. Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol. Sci. 112, 468–481 (2009).

    Article  CAS  Google Scholar 

  15. Sakamoto, Y. et al. Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J. Toxicol. Sci. 34, 65–76 (2009).

    Article  CAS  Google Scholar 

  16. Miyawaki, J., Yudasaka, M., Azami, T., Kubo, Y. & Iijima, S. Toxicity of single-walled carbon nanohorns. ACS Nano 2, 213–226 (2008).

    Article  CAS  Google Scholar 

  17. Bonde, J. P. Male reproductive organs are at risk from environmental hazards. Asian J. Androl. 12, 152–156 (2010).

    Article  CAS  Google Scholar 

  18. Yoshida, S. et al. Effect of nanoparticles on the male reproductive system of mice. Int. J. Androl. 32, 337–342 (2009).

    Article  CAS  Google Scholar 

  19. Yoshida, S. et al. Effects of fetal exposure to carbon nanoparticles on reproductive function in male offspring. Fertil. Steril. 93, 1695–1699 (2010).

    Article  CAS  Google Scholar 

  20. Purvis, K. & Christiansen, E. Male infertility: current concepts. Ann. Med. 24, 259–272 (1992).

    Article  CAS  Google Scholar 

  21. Howards, S. S. Treatment of male infertility. N. Engl. J. Med. 332, 312–317 (1995).

    Article  CAS  Google Scholar 

  22. Saleh, R. A. & Agarwal, A. Oxidative stress and male infertility: from research bench to clinical practice. J. Androl. 23, 737–752 (2002).

    CAS  Google Scholar 

  23. Tremellen, K. Oxidative stress and male infertility—a clinical perspective. Hum. Reprod. Update 14, 243–258 (2008).

    Article  CAS  Google Scholar 

  24. Xia, T. et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6, 1794–1807 (2006).

    Article  CAS  Google Scholar 

  25. Liu, Z. et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 68, 6652–6660 (2008).

    Article  CAS  Google Scholar 

  26. De Jong, W. H. et al. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29, 1912–1919 (2008).

    Article  CAS  Google Scholar 

  27. Kwon, J. T. et al. Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. J. Occup. Health 50, 1–6 (2008).

    Article  Google Scholar 

  28. Li, M. W. M., Mruk, D. D., Lee, W. M. & Cheng, C. Y. Cytokines and junction restructuring events during spermatogenesis in the testis: an emerging concept of regulation. Cytokine Growth Factor Rev. 20, 329–338 (2009).

    Article  CAS  Google Scholar 

  29. Cheng, C. Y. & Mruk, D. D. Cell junction dynamics in the testis: Sertoli–germ cell interactions and male contraceptive development. Physiol. Rev. 82, 825–874 (2002).

    Article  CAS  Google Scholar 

  30. Meistrich, M. L. et al. Rapid recovery of spermatogenesis after mitoxantrone, vincristine, vinblastine and prednisone chemotherapy for Hodgkin's disease. J. Clin. Oncol. 15, 3488–3495 (1997).

    Article  CAS  Google Scholar 

  31. Mandal, T. K. & Das, N. S. Testicular toxicity in cannabis extract treated mice: association with oxidative stress and role of antioxidant enzyme systems. Toxicol. Ind. Health 26, 11–23 (2010).

    Article  CAS  Google Scholar 

  32. Lacerda, L. et al. Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomedicine 3, 149–161 (2008).

    Article  CAS  Google Scholar 

  33. Safe, S. H. Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit. Rev. Toxicol. 24, 87–149 (1994).

    Article  CAS  Google Scholar 

  34. Rodamilans, M. et al. Lead toxicity on endocrine testicular function in an occupationally exposed population. Hum. Toxicol. 7, 125–128 (1988).

    Article  CAS  Google Scholar 

  35. Li, C. M. et al. Effects of inhaled nanoparticle-rich diesel exhaust on regulation of testicular function in adult male rats. Inhal. Toxicol. 21, 803–811 (2009).

    Article  CAS  Google Scholar 

  36. Ramdhan, D. H. et al. Nanoparticle-rich diesel exhaust may disrupt testosterone biosynthesis and metabolism via growth hormone. Toxicol. Lett. 191, 103–108 (2009).

    Article  CAS  Google Scholar 

  37. Davies, K. J. Oxidative stress: the paradox of aerobic life. Biochem. Soc. Symp. 61, 1–31 (1995).

    Article  CAS  Google Scholar 

  38. Kazzaz, J. A. et al. Cellular oxygen toxicity: oxidant injury without apoptosis. J. Biol. Chem. 271, 15182–15186 (1996).

    Article  CAS  Google Scholar 

  39. Alvarez, J. G., Touchstone, J. C., Blasco, L. & Storey, B. T. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. J. Androl. 8, 338–348 (1987).

    Article  CAS  Google Scholar 

  40. Sergerie, M., Laforest, G., Bujan, L., Bissonnette, F. & Bleau, G. Sperm DNA fragmentation: threshold value in male fertility. Hum. Reprod. 20, 3446–3451 (2005).

    Article  CAS  Google Scholar 

  41. Calvo, L., Dennison-Lagos, L., Banks, S. M. & Sherins, R. J. Characterization and frequency distribution of sperm acrosome reaction among normal and infertile men. Hum. Reprod. 9, 1875–1879 (1994).

    Article  CAS  Google Scholar 

  42. Goyal, H. O. et al. Neonatal estrogen exposure of male rats alters reproductive functions at adulthood. Biol. Reprod. 68, 2081–2091 (2003).

    Article  CAS  Google Scholar 

  43. Zhou, H. Y. et al. A nano-combinatorial library strategy for the discovery of nanotubes with reduced protein-binding, cytotoxicity and immune response. Nano Lett. 8, 859–865 (2008).

    Article  CAS  Google Scholar 

  44. Watanabe, T. & Endo, A. Effects of selenium deficiency on sperm morphology and spermatocyte chromosomes in mice. Mutat. Res. 262, 93–99 (1991).

    Article  CAS  Google Scholar 

  45. Santos, J. R. et al. Probing the structure and function of mammalian sperm using optical and fluorescence microscopy. Mod. Res. Educ. Topics Microsc. 21, 394–402 (2007).

    Google Scholar 

  46. Ozaki, T., Takahashi, K., Kanasaki, H. & Miyazaki, K. Evaluation of acrosome reaction and viability of human sperm with two fluorescent dyes. Arch. Gynecol. Obstet. 266, 114–117 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Q. Jia, J. Han, Q. Wang, Y. Liu, T. Powell, D. Broughton, A. L. Vavere and L. Mann for technical assistance, and B. Ma for stimulating discussions. This work was supported by the National Basic Research Program of China (973 Program 2010CB933504), the National Cancer Institute (P30CA027165), the American Lebanese Syrian Associated Charities and St Jude Children's Research Hospital.

Author information

Authors and Affiliations

Authors

Contributions

B.Y. and Y.B. conceived and designed the experiments. Y.B., Y.Z., J.Z., Q.M., W.Z., E.R.B. and S.E.S. performed the experiments. B.Y., Y.B. and Y.Z. analysed the data. Y.B., Q.M., W.Z. and S.E.S. contributed materials and analysis tools. B.Y. and Y.B. co-wrote the paper.

Corresponding author

Correspondence to Bing Yan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 562 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, Y., Zhang, Y., Zhang, J. et al. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nature Nanotech 5, 683–689 (2010). https://doi.org/10.1038/nnano.2010.153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing