Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neural systems of reinforcement for drug addiction: from actions to habits to compulsion

An Erratum to this article was published on 01 July 2006

Abstract

Drug addiction is increasingly viewed as the endpoint of a series of transitions from initial drug use—when a drug is voluntarily taken because it has reinforcing, often hedonic, effects—through loss of control over this behavior, such that it becomes habitual and ultimately compulsive. Here we discuss evidence that these transitions depend on interactions between pavlovian and instrumental learning processes. We hypothesize that the change from voluntary drug use to more habitual and compulsive drug use represents a transition at the neural level from prefrontal cortical to striatal control over drug seeking and drug taking behavior as well as a progression from ventral to more dorsal domains of the striatum, involving its dopaminergic innervation. These neural transitions may themselves depend on the neuroplasticity in both cortical and striatal structures that is induced by chronic self-administration of drugs.

*Note: In the version of this article initially published, there is an error in Figure 1. Please see the PDF for details.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representation of limbic circuitry, with tentative localization of functions involved in drug addiction.

References

  1. Haber, S.N., Fudge, J.L. & McFarland, N.R. Striatonigral pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20, 2369–2382 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dickinson, A. & Balleine, B. Motivational control of goal-directed action. Anim. Learn. Behav. 22, 1–18 (1994).

    Article  Google Scholar 

  3. White, N.M. & McDonald, R.J. Multiple parallel memory systems in the brain of the rat. Neurobiol. Learn. Mem. 77, 125–184 (2002).

    Article  PubMed  Google Scholar 

  4. O'Brien, C.P. & McLellan, A.T. Myths about the treatment of addiction. Lancet 347, 237–240 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Leshner, A.I. Addiction is a brain disease, and it matters. Science 278, 45–47 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Fiorillo, C.D., Tobler, P.N. & Schultz, W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299, 1898–1902 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Robbins, T.W. & Everitt, B.J. Functions of dopamine in the dorsal and ventral striatum. Seminars in the Neurosciences 4, 119–128 (1992).

    Article  Google Scholar 

  9. Ito, R., Dalley, J.W., Howes, S.R., Robbins, T.W. & Everitt, B.J. Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J. Neurosci. 20, 7489–7495 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Parkinson, J.A., Olmstead, M.C., Burns, L.H., Robbins, T.W. & Everitt, B.J. Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive Pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine. J. Neurosci. 19, 2401–2411 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Di Ciano, P., Cardinal, R.N., Cowell, R.A., Little, S.J. & Everitt, B.J. Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and performance of Pavlovian approach behavior. J. Neurosci. 21, 9471–9477 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dalley, J.W. et al. Time-limited modulation of appetitive Pavlovian memory by D1 and NMDA receptors in the nucleus accumbens. Proc. Natl. Acad. Sci. USA 102, 6189–6194 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hall, J., Parkinson, J.A., Connor, T.M., Dickinson, A. & Everitt, B.J. Involvement of the central nucleus of the amygdala and nucleus accumbens core in mediating Pavlovian influences on instrumental behaviour. Eur. J. Neurosci. 13, 1984–1992 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Wyvell, C.L. & Berridge, K.C. Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “wanting” without enhanced “liking” or response reinforcement. J. Neurosci. 20, 8122–8130 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Robinson, T.E. & Berridge, K.C. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Brain Res. Rev. 18, 247–291 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Kearns, D.N. & Weiss, S.J. Sign-tracking (autoshaping) in rats: A comparison of cocaine and food as unconditioned stimuli. Learn. Behav. 32, 463–476 (2004).

    Article  PubMed  Google Scholar 

  17. Grimm, J.W., Kruzich, P.J. & See, R.E. Contingent access to stimuli associated with cocaine self- administration is required for reinstatement of drug-seeking behavior. Psychobiology 28, 383–386 (2000).

    CAS  Google Scholar 

  18. Di Ciano, P. & Everitt, B.J. Differential control over drug-seeking behavior by drug-associated conditioned reinforcers and discriminative stimuli predictive of drug availability. Behav. Neurosci. 117, 952–960 (2003).

    Article  PubMed  Google Scholar 

  19. Cardinal, R.N. & Everitt, B.J. Neural and psychological mechanisms underlying appetitive learning: links to drug addiction. Curr. Opin. Neurobiol. 14, 156–162 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Everitt, B.J., Dickinson, A. & Robbins, T.W. The neuropsychological basis of addictive behaviour. Brain Res. Brain Res. Rev. 36, 129–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Cardinal, R.N., Robbins, T.W. & Everitt, B.J. The effects of d-amphetamine, chlordiazepoxide, alpha- flupenthixol and behavioural manipulations on choice of signalled and unsignalled delayed reinforcement in rats. Psychopharmacology (Berl.) 152, 362–375 (2000).

    Article  CAS  Google Scholar 

  22. Taylor, J.R. & Robbins, T.W. Enhanced behavioural control by conditioned reinforcers following microinjections of d-amphetamine into the nucleus accumbens. Psychopharmacology (Berl.) 84, 405–412 (1984).

    Article  CAS  Google Scholar 

  23. Di Ciano, P. & Everitt, B.J. Conditioned reinforcing properties of stimuli paired with self-administered cocaine, heroin or sucrose: implications for the persistence of addictive behaviour. Neuropharmacology 47 (Suppl.) 202–213 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Everitt, B.J. & Robbins, T.W. Second-order schedules of drug reinforcement in rats and monkeys: measurement of reinforcing efficacy and drug-seeking behaviour. Psychopharmacology (Berl.) 153, 17–30 (2000).

    Article  CAS  Google Scholar 

  25. Robbins, T.W. & Everitt, B.J. Drug addiction: bad habits add up. Nature 398, 567–570 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Groenewegen, H.J., Wright, C.I. & Beijer, A.V.J. The nucleus accumbens: Gateway for limbic structures to reach the motor system? Prog. Brain Res. 107, 485–511 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Kelley, A.E. & Berridge, K.C. The neuroscience of natural rewards: Relevance to addictive drugs. J. Neurosci. 22, 3306–3311 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ikemoto, S., Qin, M. & Liu, Z.H. The functional divide for primary reinforcement of D-amphetamine lies between the medial and lateral ventral striatum: Is the division of the accumbens core, shell, and olfactory tubercle valid? J. Neurosci. 25, 5061–5065 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fenu, S., Bassareo, V. & Di Chiara, G. A role for dopamine D1 receptors of the nucleus accumbens shell in conditioned taste aversion learning. J. Neurosci. 21, 6897–6904 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yin, H.H., Ostlund, S.B., Knowlton, B.J. & Balleine, B.W. The role of the dorsomedial striatum in instrumental conditioning. Eur. J. Neurosci. 22, 513–523 (2005).

    Article  PubMed  Google Scholar 

  31. Ostlund, S.B. & Balleine, B.W. Lesions of medial prefrontal cortex disrupt the acquisition but not the expression of goal-directed learning. J. Neurosci. 25, 7763–7770 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yin, H.H., Knowlton, B.J. & Balleine, B.W. Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur. J. Neurosci. 19, 181–189 (2004).

    Article  PubMed  Google Scholar 

  33. Wolffgramm, J. & Heyne, A. From controlled drug intake to loss of control - the irreversible development of drug-addiction in the rat. Behav. Brain Res. 70, 77–94 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Deroche-Gamonet, V., Belin, D. & Piazza, P.V. Evidence for addiction-like behavior in the rat. Science 305, 1014–1017 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Vanderschuren, L.J. & Everitt, B.J. Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 305, 1017–1019 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Ito, R., Dalley, J.W., Robbins, T.W. & Everitt, B.J. Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J. Neurosci. 22, 6247–6253 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jakes, I. Theoretical Approaches to Obsessive-Compulsive Disorder (Cambridge Univ. Press, Cambridge, 1996).

    Book  Google Scholar 

  38. Barrett, J.E., Katz, J.L. & Glowa, J.R. Effects of D-amphetamine on responding of squirrel-monkeys maintained under 2nd-order schedules of food presentation, electric-shock presentation or stimulus-shock termination. J. Pharmacol. Exp. Ther. 218, 692–700 (1981).

    CAS  PubMed  Google Scholar 

  39. Dickinson, A., Nicholas, D.J. & Adams, C.D. The effect of instrumental training contingency on susceptibility to reinforcer devaluation. Q. J. Exp. Psychol. 35B, 35–51 (1983).

    Article  Google Scholar 

  40. Faure, A., Haberland, U., Conde, F. & El Massioui, N. Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation. J. Neurosci. 25, 2771–2780 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dickinson, A., Wood, N. & Smith, J.W. Alcohol seeking by rats: Action or habit? Q. J. Exp. Psychol. B 55, 331–348 (2002).

    Article  PubMed  Google Scholar 

  42. Miles, F.J., Everitt, B.J. & Dickinson, A. Oral cocaine seeking by rats: action or habit? Behav. Neurosci. 117, 927–938 (2003).

    Article  PubMed  Google Scholar 

  43. Di Ciano, P. & Everitt, B.J. Direct interactions between the basolateral amygdala and nucleus accumbens core underlie cocaine-seeking behavior by rats. J. Neurosci. 24, 7167–7173 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vanderschuren, L.M.J., Di Ciano, P. & Everitt, B.J. Involvement of the dorsal striatum in cue-controlled cocaine seeking. J. Neurosci. 25, 8665–8770 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Goldstein, R.Z. & Volkow, N.D. Drug addiction and its underlying neurobiological basis: Neuroimaging evidence for the involvement of the frontal cortex. Am. J. Psychiatry 159, 1642–1652 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Letchworth, S.R., Nader, M.A., Smith, H.R., Friedman, D.P. & Porrino, L.J. Progression of changes in dopamine transporter binding site density as a result of cocaine self-administration in rhesus monkeys. J. Neurosci. 21, 2799–2807 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Porrino, L.J., Lyons, D., Smith, H.R., Daunais, J.B. & Nader, M.A. Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. J. Neurosci. 24, 3554–3562 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nader, M.A. et al. Effects of cocaine self-administration on striatal dopamine systems in rhesus monkeys: Initial and chronic exposure. Neuropsychopharmacology 27, 35–46 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. O'Doherty, J. et al. Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304, 452–454 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Whitelaw, R.B., Markou, A., Robbins, T.W. & Everitt, B.J. Excitotoxic lesions of the basolateral amygdala impair the acquisition of cocaine-seeking behaviour under a second-order schedule of reinforcement. Psychopharmacology (Berl.) 127, 213–224 (1996).

    Article  CAS  Google Scholar 

  51. Alderson, H.L., Robbins, T.W. & Everitt, B.J. The effects of excitotoxic lesions of the basolateral amygdala on the acquisition of heroin-seeking behaviour in rats. Psychopharmacology (Berl.) 153, 111–119 (2000).

    Article  CAS  Google Scholar 

  52. Hutcheson, D.M., Parkinson, J.A., Robbins, T.W. & Everitt, B.J. The effects of nucleus accumbens core and shell lesions on intravenous heroin self-administration and the acquisition of drug-seeking behaviour under a second-order schedule of heroin reinforcement. Psychopharmacology (Berl.) 153, 464–472 (2001).

    Article  CAS  Google Scholar 

  53. Ito, R., Robbins, T.W. & Everitt, B.J. Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat. Neurosci. 7, 389–397 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Winstanley, C.A., Theobald, D.E.H., Cardinal, R.N. & Robbins, T.W. Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. J. Neurosci. 24, 4718–4722 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cardinal, R.N. & Cheung, T.H. Nucleus accumbens core lesions retard instrumental learning and performance with delayed reinforcement in the rat. BMC Neurosci. 6, 9 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Hutcheson, D.M. & Everitt, B.J. The effects of selective orbitofrontal cortex lesions on the acquisition and performance of cue-controlled cocaine seeking in rats. Ann. NY Acad. Sci. 1003, 410–411 (2003).

    Article  PubMed  Google Scholar 

  57. Pears, A., Parkinson, J.A., Hopewell, L., Everitt, B.J. & Roberts, A.C. Lesions of the orbitofrontal but not medial prefrontal cortex disrupt conditioned reinforcement in primates. J. Neurosci. 23, 11189–11201 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schoenbaum, G., Setlow, B., Saddoris, M.P. & Gallagher, M. Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala. Neuron 39, 855–867 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Kalivas, P.W. & McFarland, K. Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology (Berl.) 168, 44–56 (2003).

    Article  CAS  Google Scholar 

  60. Shaham, Y., Shalev, U., Lu, L., de Wit, H. & Stewart, J. The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology (Berl.) 168, 3–20 (2003).

    Article  CAS  Google Scholar 

  61. Meil, W.M. & See, R.E. Lesions of the basolateral amygdala abolish the ability of drug associated cues to reinstate responding during withdrawal from self-administered cocaine. Behav. Brain Res. 87, 139–148 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Fuchs, R.A., Evans, K.A., Parker, M.P. & See, R.E. Differential involvement of orbitofrontal cortex subregions in conditioned cue-induced and cocaine-primed reinstatement of cocaine seeking in rats. J. Neurosci. 24, 6600–6610 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McFarland, K. & Kalivas, P.W. The circuitry mediating cocaine-induced reinstatement of drug seeking behavior. J. Neurosci. 21, 8655–8663 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. McFarland, K., Lapish, C.C. & Kalivas, P.W. Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug seeking behavior. J. Neurosci. 23, 3531–3537 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. See, R.E., Kruzich, P.J. & Grimm, J.W. Dopamine, but not glutamate, receptor blockade in the basolateral amygdala attenuates conditioned reward in a rat model of relapse to cocaine-seeking behavior. Psychopharmacology (Berl.) 154, 301–310 (2001).

    Article  CAS  Google Scholar 

  66. Fuchs, R.A. et al. The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology 30, 296–309 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Vorel, S.R., Liu, X., Hayes, R.J., Spector, J.A. & Gardner, E.L. Relapse to cocaine-seeking after hippocampal theta burst stimulation. Science 292, 1175–1178 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Selden, N.R.W., Everitt, B.J., Jarrard, L.E. & Robbins, T.W. Complementary roles for the amygdala and hippocampus in aversive conditioning to explicit and contextual cues. Neuroscience 42, 335–350 (1991).

    Article  CAS  PubMed  Google Scholar 

  69. Pennartz, C.M.A., Groenewegan, H.J. & Lopas da Silva, F.H. The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog. Neurobiol. 42, 719–761 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Goto, Y. & Grace, A.A. Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nat. Neurosci. 8, 805–812 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Grace, A.A., Floresco, S.B., West, A.R. & Goto, Y. Dissociation of tonic and phasic dopamine neuron activity by afferent pathway activation: Relationship to patterns of dopamine release. Int. J. Neuropsychopharmacol. 7, S15–S15 (2004).

    Article  CAS  Google Scholar 

  72. O'Donnell, P. Dopamine gating of forebrain neural ensembles. Eur. J. Neurosci. 17, 429–435 (2003).

    Article  PubMed  Google Scholar 

  73. Floresco, S.B., Blaha, C.D., Yang, C.R. & Phillips, A.G. Modulation of hippocampal and amygdalar-evoked activity of nucleus accumbens neurons by dopamine: cellular mechanisms of input selection. J. Neurosci. 21, 2851–2860 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Caine, S.B., Humby, T., Robbins, T.W. & Everitt, B.J. Behavioral effects of psychomotor stimulants in rats with dorsal or ventral subiculum lesions: Locomotion, cocaine self- administration, and prepulse inhibition of startle. Behav. Neurosci. 115, 880–894 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Burns, L.H., Robbins, T.W. & Everitt, B.J. Differential effects of excitotoxic lesions of the basolateral amygdala, ventral subiculum and medial prefrontal cortex on responding with conditioned reinforcement and locomotor activity potentiated by intra-accumbens infusions of D-amphetamine. Behav. Brain Res. 55, 167–183 (1993).

    Article  CAS  PubMed  Google Scholar 

  76. Weissenborn, R., Robbins, T.W. & Everitt, B.J. Effects of medial prefrontal or anterior cingulate cortex lesions on responding for cocaine under fixed-ratio and second-order schedules of reinforcement in rats. Psychopharmacology (Berl.) 134, 242–257 (1997).

    Article  CAS  Google Scholar 

  77. Dalley, J.W., Cardinal, R.N. & Robbins, T.W. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci. Biobehav. Rev. 28, 771–784 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Rogers, R.D. & Robbins, T.W. Investigating the neurocognitive deficits associated with chronic drug misuse. Curr. Opin. Neurobiol. 11, 250–257 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Bolla, K.I. et al. Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage 19, 1085–1094 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Hester, R. & Garavan, H. Executive dysfunction in cocaine addiction: evidence for discordant frontal, cingulate, and cerebellar activity. J. Neurosci. 24, 11017–11022 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Volkow, N.D., Fowler, J.S. & Wang, G.J. The addicted human brain viewed in the light of imaging studies: brain circuits and treatment strategies. Neuropharmacology 47, 3–13 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Crombag, H.S., Gorny, G., Li, Y.L., Kolb, B. & Robinson, T.E. Opposite effects of amphetamine self-administration experience on dendritic spines in the medial and orbital prefrontal cortex. Cereb. Cortex 15, 341–348 (2005).

    Article  PubMed  Google Scholar 

  83. Killcross, S. & Coutureau, E. Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb. Cortex 13, 400–408 (2003).

    Article  PubMed  Google Scholar 

  84. Corbit, L.H. & Balleine, B.W. The role of prelimbic cortex in instrumental conditioning. Behav. Brain Res. 146, 145–157 (2003).

    Article  PubMed  Google Scholar 

  85. Robinson, T.E. & Berridge, K.C. Addiction. Annu. Rev. Psychol. 54, 25–53 (2003).

    Article  PubMed  Google Scholar 

  86. Taylor, J.R. & Horger, B.A. Enhanced responding for conditioned reward produced by intra-accumbens amphetamine is potentiated after cocaine sensitization. Psychopharmacology (Berl.) 142, 31–40 (1999).

    Article  CAS  Google Scholar 

  87. Vezina, P. Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neurosci. Biobehav. Rev. 27, 827–839 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Koob, G.F. & Le Moal, M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24, 97–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Koob, G.F. et al. Neurobiological mechanisms in the transition from drug use to drug dependence. Neurosci. Biobehav. Rev. 27, 739–749 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. The Frontal Lobes and Neuropsychiatric Illness (Salloway, S.P., Malloy, P.E. & Duffy, J.D., eds.) (American Psychiatric Press, Washington, D.C., 2001).

  91. Altman, J. et al. The biological, social and clinical bases of drug addiction: Commentary and debate. Psychopharmacology (Berl.) 125, 285–345 (1996).

    Article  CAS  Google Scholar 

  92. Everitt, B.J. & Wolf, M.E. Psychomotor stimulant addiction: A neural systems perspective. J. Neurosci. 22, 3312–3320 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stewart, J., de Wit, H. & Eikelboom, R. The role of unconditioned and conditioned drug effects in the self administration of opiates and stimulants. Psychol. Rev. 91, 251–268 (1984).

    Article  CAS  PubMed  Google Scholar 

  94. Di Chiara, G. A motivational learning hypothesis of the role of mesolimbic dopamine in compulsive drug use. J. Psychopharmacol. 12, 54–67 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Wise, R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Berridge, K.C. Pleasures of the brain. Brain Cogn. 52, 106–128 (2003).

    Article  PubMed  Google Scholar 

  97. Kadohisa, M., Rolls, E.T. & Verhagen, J.V. Orbitofrontal cortex: Neuronal representation of oral temperature and capsaicin in addition to taste and texture. Neuroscience 127, 207–221 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Critchley, H.D., Wiens, S., Rotshtein, P., Ohman, A. & Dolan, R.J. Neural systems supporting interoceptive awareness. Nat. Neurosci. 7, 189–195 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Stewart, J. & de Wit, H. in Methods of Assessing the Reinforcing Properties of Abused Drugs (ed. Bozarth, M.A.) 211–227 (Springer-Verlag, New York, 1987).

    Book  Google Scholar 

  100. Lu, L., Grimm, J.W., Hope, B.T. & Shaham, Y. Incubation of cocaine craving after withdrawal: a review of preclinical data. Neuropharmacology 47, 214–226 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research is supported by the UK Medical Research Council. We acknowledge the major contributions of H. Alderson, M. Arroyo, R. Cardinal, J. Dalley, P. Di Ciano, A. Dickinson, L. Fattore, J. Hall, K. Hellemans, D. Hutcheson, R. Ito, J. Lee, F. Miles, C. Olmstead, J. Parkinson, M. Pilla, Y. Pelloux, K. Thomas, L. Vanderschuren, R. Weissenborn and R. Whitelaw.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Everitt, B., Robbins, T. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8, 1481–1489 (2005). https://doi.org/10.1038/nn1579

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1579

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing