Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunogold cytochemistry in neuroscience

Subjects

Abstract

The complexity of the central nervous system calls for immunocytochemical procedures that allow target proteins to be localized with high precision and with opportunities for quantitation. Immunogold procedures stand out as particularly powerful in this regard. Although these procedures have found wide application in the neuroscience community, they present limitations and pitfalls that must be taken into account. At the same time, these procedures offer potentials that remain to be fully realized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles underlying a two-step, postembedding immunogold procedure.
Figure 2: Experimental determination of anatomical resolution.
Figure 3: Gold particles signaling a membrane protein epitope are normally distributed around the plasma membrane.
Figure 4: Targeted disruption of an anchoring molecule confirms selectivity of antibody under the conditions of immunocytochemistry.
Figure 5: Positive control, showing that the antibody recognizes the target antigen under the conditions of immunocytochemistry.
Figure 6: Positive control, validating immunocytochemical procedure for small molecular antigens.
Figure 7: Sandwiches like those used for validation can be used to establish calibration curves.
Figure 8: Combining immunogold labeling for glutamate receptors and glutamate.

Similar content being viewed by others

References

  1. Griffiths, G. Fine Structure Immunocytochemistry (Springer, 1993).

  2. Maunsbach, A.B. & Afzelius, A. Biomedical Electron Microscopy: Illustrated Methods and Interpretations 1st edn. (Academic, 1999).

  3. van den Pol, A.N. Neuronal imaging with colloidal gold. J. Microsc. 155, 27–59 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Coons, A.H., Creech, H.J. & Jones, R.N. Immunological properties of an antibody containing a fluorescent group. Proc. Soc. Exp. Biol. Med. 47, 200–202 (1941).

    Article  CAS  Google Scholar 

  5. Hayat, M.A. Colloidal Gold: Principles, Methods, and Applications Vol. 3 (Academic, 1990).

  6. Lorincz, A. & Nusser, Z. Specificity of immunoreactions: the importance of testing specificity in each method. J. Neurosci. 28, 9083–9086 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saper, C.B. & Sawchenko, P.E. Magic peptides, magic antibodies: guidelines for appropriate controls for immunohistochemistry. J. Comp. Neurol. 465, 161–163 (2003).

    Article  PubMed  Google Scholar 

  8. Fritschy, J.M. Is my antibody-staining specific? How to deal with pitfalls of immunohistochemistry. Eur. J. Neurosci. 28, 2365–2370 (2008).

    Article  PubMed  Google Scholar 

  9. Pool, C.W. et al. On the way to a specific immunocytochemical localization. in Immunohistochemistry Vol. 3 (ed. Cuello, A.C.) Ch. 1, 1–46 (Wiley-Interscience, 1983).

    Google Scholar 

  10. Burry, R.W. Controls for immunocytochemistry: an update. J. Histochem. Cytochem. 59, 6–12 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Holmseth, S. et al. Specificity controls for immunocytochemistry: the antigen preadsorption test can lead to inaccurate assessment of antibody specificity. J. Histochem. Cytochem. 60, 174–187 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rhodes, K.J. & Trimmer, J.S. Antibodies as valuable neuroscience research tools versus reagents of mass distraction. J. Neurosci. 26, 8017–8020 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Slot, J.W., Posthuma, G., Chang, L.Y., Crapo, J.D. & Geuze, H.J. Quantitative aspects of immunogold labeling in embedded and in nonembedded sections. Am. J. Anat. 185, 271–281 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Coons, A.H. Fluorescent antibodies as histochemical tools. Fed. Proc. 10, 558–559 (1951).

    CAS  PubMed  Google Scholar 

  15. Faulk, W.P. & Taylor, G.M. An immunocolloid method for the electron microscope. Immunochemistry 8, 1081–1083 (1971).

    Article  CAS  PubMed  Google Scholar 

  16. Roth, J. et al. Applications of immunogold and lectin-gold labeling in tumor research and diagnosis. Histochem. Cell Biol. 106, 131–148 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Gingras, D. & Bendayan, M. Compartmentalization of secretory proteins in pancreatic zymogen granules as revealed by immunolabeling on cryo-fixed and molecular distillation processed tissue. Biol. Cell 81, 153–163 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Kharazia, V.N. & Weinberg, R.J. Immunogold localization of AMPA and NMDA receptors in somatic sensory cortex of albino rat. J. Comp. Neurol. 412, 292–302 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Sternberger, L.A. Immunocytochemistry (Wiley, 1986).

  20. Sesack, S.R. & Snyder, C.L. Cellular and subcellular localization of syntaxin-like immunoreactivity in the rat striatum and cortex. Neuroscience 67, 993–1007 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Matsubara, A., Laake, J.H., Davanger, S., Usami, S. & Ottersen, O.P. Organization of AMPA receptor subunits at a glutamate synapse: a quantitative immunogold analysis of hair cell synapses in the rat organ of Corti. J. Neurosci. 16, 4457–4467 (1996). Defining conditions that affect the outcome of postembedding immunogold labeling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Remacle, J., Fowler, S., Beaufay, H., Amarcostesec, A. & Berthet, J. Analytical study of microsomes and isolated subcellular membranes from rat liver. VI. Electron microscope examination of microsomes for cytochrome b5 by means of a ferritin-labeled antibody. J. Cell Biol. 71, 551–564 (1976).

    Article  CAS  PubMed  Google Scholar 

  23. Singer, S.J. Preparation of an electron-dense antibody conjugate. Nature 183, 1523–1524 (1959).

    Article  CAS  PubMed  Google Scholar 

  24. Dutton, A.H., Tokuyasu, K.T. & Singer, S.J. Iron-dextran antibody conjugates: general method for simultaneous staining of two components in high-resolution immunoelectron microscopy. Proc. Natl. Acad. Sci. USA 76, 3392–3396 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sternberger, L.A., Donati, E.J., Cuculis, J.J. & Petrali, J.P. Indirect immunouranium technique for staining of embedded antigen in electron microscopy. Exp. Mol. Pathol. 76, 112–125 (1965).

    Article  Google Scholar 

  26. Chan, J., Aoki, C. & Pickel, V.M. Optimization of differential immunogold-silver and peroxidase labeling with maintenance of ultrastructure in brain sections before plastic embedding. J. Neurosci. Methods 33, 113–127 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, X. et al. Organization of the core structure of the postsynaptic density. Proc. Natl. Acad. Sci. USA 105, 4453–4458 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Newman, G.R. & Hobot, J.A. Resin Microscopy and On-Section Immunocytochemistry (Springer, 1993).

  29. Ji, Z.Q., Aas, J.E., Laake, J., Walberg, F. & Ottersen, O.P. An electron microscopic, immunogold analysis of glutamate and glutamine in terminals of rat spinocerebellar fibers. J. Comp. Neurol. 307, 296–310 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Shupliakov, O., Brodin, L., Cullheim, S., Ottersen, O.P. & Storm-Mathisen, J. Immunogold quantification of glutamate in two types of excitatory synapse with different firing patterns. J. Neurosci. 12, 3789–3803 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Somogyi, P., Halasy, K., Somogyi, J., Storm-Mathisen, J. & Ottersen, O.P. Quantification of immunogold labelling reveals enrichment of glutamate in mossy and parallel fibre terminals in cat cerebellum. Neuroscience 19, 1045–1050 (1986).

    Article  CAS  PubMed  Google Scholar 

  32. Hu, H. et al. Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J. Neurosci. 21, 9585–9597 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Landsend, A.S. et al. Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J. Neurosci. 17, 834–842 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takumi, Y., Ramirez-Leon, V., Laake, P., Rinvik, E. & Ottersen, O.P. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat. Neurosci. 2, 618–624 (1999). Simultaneous visualization of proteins and small molecule antigens on the same section.

    Article  CAS  PubMed  Google Scholar 

  35. Valtschanoff, J.G. & Weinberg, R.J. Laminar organization of the NMDA receptor complex within the postsynaptic density. J. Neurosci. 21, 1211–1217 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nagelhus, E.A. et al. Aquaporin-4 water channel protein in the rat retina and optic nerve: polarized expression in Muller cells and fibrous astrocytes. J. Neurosci. 18, 2506–2519 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ganeshina, O., Berry, R.W., Petralia, R.S., Nicholson, D.A. & Geinisman, Y. Synapses with a segmented, completely partitioned postsynaptic density express more AMPA receptors than other axospinous synaptic junctions. Neuroscience 125, 615–623 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Ganeshina, O., Berry, R.W., Petralia, R.S., Nicholson, D.A. & Geinisman, Y. Differences in the expression of AMPA and NMDA receptors between axospinous perforated and nonperforated synapses are related to the configuration and size of postsynaptic densities. J. Comp. Neurol. 468, 86–95 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Bloss, E.B. et al. Morphological and molecular changes in aging rat prelimbic prefrontal cortical synapses. Neurobiol. Aging 34, 200–210 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Hara, Y. et al. Synaptic distributions of GluA2 and PKMζ in the monkey dentate gyrus and their relationships with aging and memory. J. Neurosci. 32, 7336–7344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Posthuma, G., Slot, J.W. & Geuze, H.J. Usefulness of the immunogold technique in quantitation of a soluble protein in ultra-thin sections. J. Histochem. Cytochem. 35, 405–410 (1987).

    Article  CAS  PubMed  Google Scholar 

  42. Kraehenbuhl, J.P., Racine, L. & Griffiths, G.W. Attempts to quantitate immunocytochemistry at the electron microscope level. Histochem. J. 12, 317–332 (1980).

    Article  CAS  PubMed  Google Scholar 

  43. Blackstad, T.W., Karagulle, T. & Ottersen, O.P. MORFOREL, a computer program for two-dimensional analysis of micrographs of biological specimens, with emphasis on immunogold preparations. Comput. Biol. Med. 20, 15–34 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Ottersen, O.P., Zhang, N. & Walberg, F. Metabolic compartmentation of glutamate and glutamine: morphological evidence obtained by quantitative immunocytochemistry in rat cerebellum. Neuroscience 46, 519–534 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Ottersen, O.P. Postembedding immunogold labelling of fixed glutamate: an electron microscopic analysis of the relationship between gold particle density and antigen concentration. J. Chem. Neuroanat. 2, 57–66 (1989).

    CAS  PubMed  Google Scholar 

  46. Ottersen, O.P. Postembedding light- and electron microscopic immunocytochemistry of amino acids: description of a new model system allowing identical conditions for specificity testing and tissue processing. Exp. Brain Res. 69, 167–174 (1987).

    Article  CAS  PubMed  Google Scholar 

  47. Bergersen, L.H. et al. Immunogold detection of l-glutamate and d-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. Cereb. Cortex 22, 1690–1697 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559 (1998). Assessing the ratio between gold particles and number of antigens using AMPA receptors as a model.

    Article  CAS  PubMed  Google Scholar 

  49. Pradidarcheep, W., Labruyere, W.T., Dabhoiwala, N.F. & Lamers, W.H. Lack of specificity of commercially available antisera: better specifications needed. J. Histochem. Cytochem. 56, 1099–1111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Holmseth, S., Lehre, K.P. & Danbolt, N.C. Specificity controls for immunocytochemistry. Anat. Embryol. (Berl.) 211, 257–266 (2006).

    Article  CAS  Google Scholar 

  51. Haj-Yasein, N.N. et al. Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet. Proc. Natl. Acad. Sci. USA 108, 17815–17820 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dale, N., Ottersen, O.P., Roberts, A. & Storm-Mathisen, J. Inhibitory neurones of a motor pattern generator in Xenopus revealed by antibodies to glycine. Nature 324, 255–257 (1986).

    Article  CAS  PubMed  Google Scholar 

  53. Storm-Mathisen, J. et al. First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301, 517–520 (1983).

    Article  CAS  PubMed  Google Scholar 

  54. Davanger, S. et al. Colocalization of gamma-aminobutyrate and gastrin in the rat antrum: an immunocytochemical and in situ hybridization study. Gastroenterology 107, 137–148 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Amiry-Moghaddam, M. et al. An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc. Natl. Acad. Sci. USA 100, 2106–2111 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rhodes, K.J. & Trimmer, J.S. Antibody-based validation of CNS ion channel drug targets. J. Gen. Physiol. 131, 407–413 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jackson, A.L. & Linsley, P.S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug Discov. 9, 57–67 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Holmseth, S. et al. Specificity of antibodies: unexpected cross-reactivity of antibodies directed against the excitatory amino acid transporter 3 (EAAT3). Neuroscience 136, 649–660 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Prasad, B.V., Burns, J.W., Marietta, E., Estes, M.K. & Chiu, W. Localization of VP4 neutralization sites in rotavirus by three-dimensional cryo-electron microscopy. Nature 343, 476–479 (1990).

    Article  CAS  PubMed  Google Scholar 

  60. Baleviciute, I., Balevicius, Z., Makaraviciute, A., Ramanaviciene, A. & Ramanavicius, A. Study of antibody/antigen binding kinetics by total internal reflection ellipsometry. Biosens. Bioelectron. 39, 170–176 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. D'Amico, F. & Skarmoutsou, E. Quantifying immunogold labelling in transmission electron microscopy. J. Microsc. 230, 9–15 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Mayer, G. & Bendayan, M. Amplification methods for the immunolocalization of rare molecules in cells and tissues. Prog. Histochem. Cytochem. 36, 3–85 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Mayhew, T.M., Muhlfeld, C., Vanhecke, D. & Ochs, M. A review of recent methods for efficiently quantifying immunogold and other nanoparticles using TEM sections through cells, tissues and organs. Ann. Anat. 191, 153–170 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Sugiyama, Y., Kawabata, I., Sobue, K. & Okabe, S. Determination of absolute protein numbers in single synapses by a GFP-based calibration technique. Nat. Methods 2, 677–684 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Tønnesen, J. & Nagerl, U.V. Superresolution imaging for neuroscience. Exp. Neurol. 242, 33–40 (2013).

    Article  PubMed  Google Scholar 

  66. Maglione, M. & Sigrist, S.J. Seeing the forest tree by tree: super-resolution light microscopy meets the neurosciences. Nat. Neurosci. 16, xxx–yyy (2013).

    Article  CAS  Google Scholar 

  67. van Lookeren Campagne, M., Oestreicher, A.B., van der Krift, T.P., Gispen, W.H. & Verkleij, A.J. Freeze-substitution and Lowicryl HM20 embedding of fixed rat brain: suitability for immunogold ultrastructural localization of neural antigens. J. Histochem. Cytochem. 39, 1267–1279 (1991).

    Article  CAS  PubMed  Google Scholar 

  68. Chaudhry, F.A. et al. Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15, 711–720 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Franciosi, S. et al. Pepsin pretreatment allows collagen IV immunostaining of blood vessels in adult mouse brain. J. Neurosci. Methods 163, 76–82 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Alelú-Paz, R. et al. A new antigen retrieval technique for human brain tissue. PLoS ONE 3, e3378 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Watanabe, M. et al. Selective scarcity of NMDA receptor channel subunits in the stratum lucidum (mossy fibre-recipient layer) of the mouse hippocampal CA3 subfield. Eur. J. Neurosci. 10, 478–487 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Posthuma, G., Slot, J.W., Veenendaal, T. & Geuze, H.J. Immunogold determination of amylase concentrations in pancreatic subcellular compartments. Eur. J. Cell Biol. 46, 327–335 (1988).

    CAS  PubMed  Google Scholar 

  73. Amiry-Moghaddam, M., Frydenlund, D.S. & Ottersen, O.P. Anchoring of aquaporin-4 in brain: molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience 129, 999–1010 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Lothe and C. Knudsen for technical assistance, P. Laake for comments, and D. Frydenlund for providing Figure 5. We gratefully acknowledge support from the Norwegian Research Council, the European Union framework programmes and the Letten Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole Petter Ottersen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amiry-Moghaddam, M., Ottersen, O. Immunogold cytochemistry in neuroscience. Nat Neurosci 16, 798–804 (2013). https://doi.org/10.1038/nn.3418

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3418

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing