Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Nanoferronics is a winning combination

Progress in controlling different ferroic orders such as ferromagnetism and ferroelectricity on the nanoscale could offer unprecedented possibilities for electronic applications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation and hysteresis cycles of the four primary ferroic orders.
Figure 2: Schematic representation of an 'intrinsic' (that is, single phase) multiferroic compound (left) and an 'artificial' multiferroic interface (right).
Figure 3: Control of electronic transport by ferroelectricity in planar and vertical structures.
Figure 4: Interplay between ferroelectricity and magnetism at different kinds of interface.

References

  1. Schmid, H. J. Phys. Condens. Matter 20, 434201 (2008).

    Article  Google Scholar 

  2. Dubovik, V. M. & Tugushev, V. V. Phys. Rep. 187, 145–202 (1990).

    Article  Google Scholar 

  3. Van Aken, B. V., Rivera, J-P., Schmid, H. & Fiebig, M. Nature 449, 702–705 (2008).

    Article  Google Scholar 

  4. Spaldin, N. A. & Fiebig, M. Science 309, 391–392 (2005).

    Article  CAS  Google Scholar 

  5. Wu, S-Y. IEEE Trans. Electron. Dev. 18, 499–504 (1974).

    Google Scholar 

  6. Hai, L. V., Takahashi, M. & Sakai, S. in Proc. 3rd IEEE Int. Memory Workshop 1–4 (IEEE, 2011); http://doi.org/d72cdj

    Google Scholar 

  7. Esaki, L., Laibowitz, R. B. & Stiles, P. J. IBM Tech. Discl. Bull. 13, 2161 (1971).

    Google Scholar 

  8. Rodriguez Contreras, J. et al. Appl. Phys. Lett. 83, 4595 (2003).

    Article  CAS  Google Scholar 

  9. Garcia, V. et al. Nature 460, 81–84 (2009).

    Article  CAS  Google Scholar 

  10. Gruverman, A. et al. Nano Lett. 9, 3539–3543 (2009).

    Article  CAS  Google Scholar 

  11. Chanthbouala, A. et al. Nature Nanotech. 7, 101–104 (2012).

    Article  CAS  Google Scholar 

  12. Pantel, D., Goetze, S., Hesse, D. & Alexe, M. ACS Nano. 5, 6032–6038 (2011).

    Article  CAS  Google Scholar 

  13. Maksymovytch, P. et al. Science 324, 1421–1425 (2009).

    Article  Google Scholar 

  14. Ikeda, S. et al. Appl. Phys. Lett. 93, 082508 (2008).

    Article  Google Scholar 

  15. Moodera, J. S., Santos, T. S. & Nagahama, T. J. Phys. Condens. Matter 19, 165202 (2007).

    Article  Google Scholar 

  16. Takahashi, Y. K. et al. Appl. Phys. Lett. 96, 072512 (2010).

    Article  Google Scholar 

  17. Sefrioui, Z. et al. Adv. Mater. 22, 5029–5034 (2010).

    Article  CAS  Google Scholar 

  18. Gajek, M. et al. Nature Mater. 6, 296–302 (2007).

    Article  CAS  Google Scholar 

  19. Ovchinnikov, I. V. & Wang, K. L. Phys. Rev. B 79, 020402(R) (2009).

    Article  Google Scholar 

  20. Chiba, D. et al. Nature Mater. 10, 853–856 (2011).

    Article  CAS  Google Scholar 

  21. Molegraaf, H. J. A. et al. Adv. Mater. 21, 3470–3474 (2009).

    Article  CAS  Google Scholar 

  22. Sun, Y., Burton, J. D. & Tsymbal, E. Y. Phys. Rev. B 81, 064413 (2010).

    Article  Google Scholar 

  23. Duan, C-G., Jaswal, S. S. & Tsymbal, E. Y. Phys. Rev. Lett. 94, 047201 (2006).

    Article  Google Scholar 

  24. Fechner, M. et al. Phys. Rev. B 78, 212406 (2008).

    Article  Google Scholar 

  25. Bocher, L. et al. Nano Lett. 12, 376–382 (2012).

    Article  CAS  Google Scholar 

  26. Garcia, V. et al. Science 327, 1106–1110 (2010).

    Article  CAS  Google Scholar 

  27. Valencia, S. et al. Nature Mater. 10, 753–759 (2011).

    Article  CAS  Google Scholar 

  28. Pantel, P. et al. Nature Mater. 11, 289–293 (2012).

    Article  CAS  Google Scholar 

  29. Nogués, J. et al. Phys. Rep. 422, 65–117 (2005).

    Article  Google Scholar 

  30. Bruno, P. Phys. Rev. B 52, 411 (1995).

    Article  CAS  Google Scholar 

  31. Horiuchi, S. & Tokura, Y. Nature Mater. 7, 357–366 (2008).

    Article  CAS  Google Scholar 

  32. Benedek, N. A. & Fennie, C. J. Phys. Rev. Lett. 106, 107204 (2011).

    Article  Google Scholar 

  33. Stengel, M., Vanderbilt, M. & Spaldin, N. A. Nature Mater. 8, 392–397 (2009).

    Article  CAS  Google Scholar 

  34. Mirhosseini, H. et al. Phys. Rev. B 81, 073406 (2010).

    Article  Google Scholar 

  35. Kopp, T & Mannhart, J. J. Appl. Phys. 106, 064504 (2009).

    Article  Google Scholar 

  36. Shen, L. et al. Phys. Rev. B 85, 064105 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

I thank A. Barthélémy and V. Garcia for useful discussions, and N. Reyren and F. Bruno for their critical reading of the manuscript. I would also like to give credit to M. Lezaic and S. Blügel for coining the term 'nanoferronics'.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bibes, M. Nanoferronics is a winning combination. Nature Mater 11, 354–357 (2012). https://doi.org/10.1038/nmat3318

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3318

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing