Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Projected response of the Indian Ocean Dipole to greenhouse warming

Abstract

Natural modes of variability centred in the tropics, such as the El Niño/Southern Oscillation and the Indian Ocean Dipole, are a significant source of interannual climate variability across the globe. Future climate warming could alter these modes of variability. For example, with the warming projected for the end of the twenty-first century, the mean climate of the tropical Indian Ocean is expected to change considerably. These changes have the potential to affect the Indian Ocean Dipole, currently characterized by an alternation of anomalous cooling in the eastern tropical Indian Ocean and warming in the west in a positive dipole event, and the reverse pattern for negative events. The amplitude of positive events is generally greater than that of negative events. Mean climate warming in austral spring is expected to lead to stronger easterly winds just south of the Equator, faster warming of sea surface temperatures in the western Indian Ocean compared with the eastern basin, and a shoaling equatorial thermocline. The mean climate conditions that result from these changes more closely resemble a positive dipole state. However, defined relative to the mean state at any given time, the overall frequency of events is not projected to change — but we expect a reduction in the difference in amplitude between positive and negative dipole events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observed and projected changes in IOD variability.
Figure 2: Historical austral spring mean climate and positive IOD conditions for the twentieth century, and future austral spring mean climate.
Figure 3: Projected changes in the IOD characteristics and associated ocean–atmosphere feedback strengths.
Figure 4: Projected changes in SST skewness of the eastern equatorial Indian Ocean.

Similar content being viewed by others

References

  1. Le Treut, H. et al. in Climate Change 2007: The Physical Science Basis (eds. Solomon, S. et al.) 19–20 (Cambridge University Press, 2007).

    Google Scholar 

  2. Gleckler, P. J. et al. Human-induced global ocean warming on multidecadal timescales. Nature Clim. Change 2, 524–529 (2012).

    Google Scholar 

  3. Alory, G., Wijffels, S. & Meyers, G. Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys. Res. Lett. 34, L02606 (2007).

    Google Scholar 

  4. Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole in the tropical Indian Ocean. Nature 401, 360–363 (1999).

    Google Scholar 

  5. Webster, P. J., Moore, A. M., Loschnigg, J. P. & Leben, R. R. Coupled oceanic-atmospheric dynamics in the Indian Ocean during 1997–98. Nature 401, 356–360 (1999).

    Google Scholar 

  6. Yu, L. & Rienecker, M. M. Mechanisms for the Indian Ocean warming during the 1997–98 El Niño. Geophys. Res. Lett. 26, 735–738 (1999).

    Google Scholar 

  7. Murtugudde, R., McCreary, J. P. & Busalacchi, A. J. Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998 J. Geophys. Res. 105, 3295–3306 (2000).

    Google Scholar 

  8. Cai, W., Cowan, T. & Sullivan, A. Recent unprecedented skewness towards positive Indian Ocean Dipole occurrences and its impact on Australian rainfall. Geophys. Res. Lett. 36, L11705 (2009).

    Google Scholar 

  9. Ihara, C., Kushnir, Y. & Cane, M. A. Warming trend of the Indian Ocean SST and Indian Ocean Dipole from 1880 to 2004. J. Clim. 21, 2035–2046 (2008).

    Google Scholar 

  10. Abram, N. J., Gagan, M. K., Cole, J. E., Hantoro, W. S. & Mudelsee, M. Recent intensification of tropical climate variability in the Indian Ocean. Nature Geosci. 1, 849–853 (2008).

    Google Scholar 

  11. Kripalani, R. H., Oh, J. H. & Chaudhari, H. S. Delayed influence of the Indian Ocean Dipole mode on the East Asia–West Pacific monsoon: possible mechanism. Int. J. Climatol. 30, 197–209 (2010).

    Google Scholar 

  12. Ashok, K., Guan, Z. & Yamagata, T. Influence of the Indian Ocean Dipole on the Australian winter rainfall. Geophys. Res. Lett. 30, L1821 (2003).

    Google Scholar 

  13. Meyers, G. A., McIntosh, P. C., Pigot, L. & Pook, M. J. The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J. Clim. 20, 2872–2880 (2007).

    Google Scholar 

  14. Ummenhofer, C. C. et al. What causes southeast Australia's worst droughts? Geophys. Res. Lett. 36, L04706 (2009).

    Google Scholar 

  15. Zubair, L., Rao, S. A. & Yamagata, T. Modulation of Sri Lankan Maha rainfall by the Indian Ocean dipole. Geophys. Res. Lett. 30, 1063 (2003).

    Google Scholar 

  16. Behera, S. K. et al. Paramount impact of the Indian Ocean Dipole on the East African short rains: A CGCM study. J. Clim. 18, 4514–4530 (2005).

    Google Scholar 

  17. Black, E., Slingo, J. & Sperber, K. R. An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Mon. Weather Rev. 131, 74–94 (2003).

    Google Scholar 

  18. Ashok, K., Guan, Z. & Yamagata, T. Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett. 28, 4499–4502 (2001).

    Google Scholar 

  19. Cai, W., Cowan, T. & Raupach, M. Positive Indian Ocean Dipole events precondition southeast Australia bushfires. Geophy. Res. Lett. 36, L19710 (2009).

    Google Scholar 

  20. Abram, N. J., Gagan, M. K., McCulloch, M. T., Chappell, J. & Hantoro, W. S. Coral reef death during the 1997 Indian Ocean Dipole linked to Indonesian wildfires. Science 301, 952–955 (2003).

    Google Scholar 

  21. Hashizume, M., Chaves, L. F. & Minakawa, N. Indian Ocean Dipole drives malaria resurgence in East African highlands. Sci. Rep. 2, 269 (2012).

    Google Scholar 

  22. Tokinaga, H. & Tanimoto, Y. Seasonal transition of SST anomalies in the tropical Indian Ocean during El Niño and Indian Ocean Dipole years. J. Meteorol. Soc. Japan 82, 1007–1018 (2004).

    Google Scholar 

  23. Fischer, A., Terray, P., Guilyardi, E., Gualdi, S. & Delecluse, P. Two independent triggers for the Indian Ocean Dipole/Zonal Mode in a coupled GCM. J. Clim. 18, 3428–3449 (2005).

    Google Scholar 

  24. Abram, N. J. et al. Seasonal characteristics of the Indian Ocean Dipole during the Holocene epoch. Nature 445, 299–302 (2007).

    Google Scholar 

  25. Annamalai, H., Xie, S. -P., McCreary, J. P. & Murtugudde, R. Impact of Indian Ocean sea surface temperature on developing El Niño. J. Clim. 18, 302–319 (2005).

    Google Scholar 

  26. Yuan, D. et al. Forcing of the Indian Ocean Dipole on the interannual variations of the tropical Pacific Ocean: roles of the Indonesian Throughflow. J. Clim, 24, 3593–3608 (2011).

    Google Scholar 

  27. Luo, J. J. et al. Interaction between El Niño and Extreme Indian Ocean Dipole. J. Clim. 23, 726–742.

    Google Scholar 

  28. Izumo T. et al. Influence of the state of the Indian Ocean Dipole on the following year's El Niño. Nature Geosci. 3, 168–172 (2010).

    Google Scholar 

  29. Saji, N. H. & Yamagata, T. Possible impacts of Indian Ocean Dipole mode events on global climate. Clim. Res. 25, 151–169 (2003).

    Google Scholar 

  30. Cai, W., van Rensch, P., Cowan, T. & Hendon, H. H. Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Clim. 24, 3910–3923 (2011).

    Google Scholar 

  31. Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 97, 163–172 (1969).

    Google Scholar 

  32. Reverdin, G., Cadel, D. & Gutzler, D. Interannual displacements of convection and surface circulation over the equatorial Indian Ocean. Q. J. R. Meteorol. Soc. 112, 43–67 (1986).

    Google Scholar 

  33. Hastenrath, S., Nicklis, A. & Greischar, L. Atmospheric-hydrospheric mechanisms of climate anomalies in the western equatorial Indian Ocean. J. Geophys. Res. 98, 20219–20235 (1993).

    Google Scholar 

  34. Udea, H. & Matsumoto, J. A. Possible triggering process of east–west asymmetric anomalies over the Indian Ocean in relation to 1997/1998 El Niño. J. Meteor. Soc. Japan 78, 803–818 (2000).

    Google Scholar 

  35. Xie, S.-P., Annamalai, H., Schott, F. & McCreary, J. P. Jr. Origin and predictability of South Indian Ocean climate variability. J. Clim. 15(8), 864–874 (2002).

    Google Scholar 

  36. Annamalai, H., Murtugudde, R. Wang, B. Potemra, J. & Xie, S-P. Coupled dynamics in the Indian Ocean: spring initiation of the zonal mode. Deep Sea Res. II 50, 2305–2330 (2003).

    Google Scholar 

  37. Murtugudde, R. & Busalacchi, A. J. Interannual variability of the dynamics and thermodynamics, and mixed layer processes in the Indian Ocean. J. Clim. 12, 2300–2326 (1999).

    Google Scholar 

  38. Li, T., Zhang, Y. S., Chang, C-P., Lu, E. & Wang, D. Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean dipole: An OGCM diagnosis. Geophys. Res. Lett. 29, 2110 (2002).

    Google Scholar 

  39. Li, T., Wang, B., Chang, C-P. & Zang, Y. A theory for the Indian Ocean dipole–zonal mode. J. Atmos. Sci. 60, 2119–2135 (2003).

    Google Scholar 

  40. Shinoda, T., Alexander, M. A. & Hendon, H. H. Remote response of the Indian Ocean to interannual SST variations in the tropical Pacific. J. Clim. 17, 362–372 (2004).

    Google Scholar 

  41. Hong, C. C., Li, T., Lin, H. & Kug, J. S. Asymmetry of the Indian Ocean Dipole. Part I: Observational Analysis. J. Clim. 21, 4834–4848 (2008).

    Google Scholar 

  42. Hong, C. C. & Li, T. Independence of SST skewness from thermocline feedback in the eastern equatorial Indian Ocean. Geophys. Res. Lett. 37, L11702 (2010).

    Google Scholar 

  43. Cai, W. & Qiu, Y. An observation-based assessment of nonlinear feedback processes associated with the Indian Ocean Dipole. J. Clim. 26, 2880–2890 (2013).

    Google Scholar 

  44. Ogata, T., Xie, S.-P., Lan, J. & Zheng, X. Importance of ocean dynamics for the skewness of the Indian Ocean Dipole mode. J. Clim. 26, 2145–2159 (2013).

    Google Scholar 

  45. Iizuka, S., Matsuura, T. & Yamagata, T. The Indian Ocean SST dipole simulated in a coupled general circulation model. Geophys. Res. Lett. 27, 3369–3372 (2000).

    Google Scholar 

  46. Baquero-Bernal, A., Latif, M. & Legutke, S. On dipole-like variability of sea surface temperature in the tropical Indian Ocean. J. Clim. 15, 1358–1368 (2002).

    Google Scholar 

  47. Yu, J.-Y., Mechoso, C. R., McWilliams, J. C. & Arakawa, A. Impacts of the Indian Ocean on the ENSO cycle. Geophys. Res. Lett. 29, 1204 (2002).

    Google Scholar 

  48. Loschnigg, J., Meehl, G. A., Webster, P. J., Arblaster, J. M. & Compo, G. P. The Asian monsoon, the Tropospheric Biennial Oscillation, and the Indian Ocean Zonal Mode in the NCAR CSM. J. Clim. 16, 1617–1642 (2003).

    Google Scholar 

  49. Gualdi, S., Guilyardi, E., Navarra, A., Masina, S. & Delecluse, P. The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Clim. Dyn. 20, 567–582 (2003).

    Google Scholar 

  50. Lau, N-C. & Nath, M. J. Coupled GCM simulation of atmosphere–ocean variability associated with zonally asymmetric SST changes in the tropical Indian Ocean. J. Clim. 17, 245–265 (2004).

    Google Scholar 

  51. Spencer, H., Sutton, R. T., Slingo, J. M., Roberts, M. & Black, E. Indian Ocean climate and dipole variability in Hadley Centre coupled GCMs. J. Clim. 18, 2286–2306 (2005).

    Google Scholar 

  52. Saji, N. H., Xie, S-P. & Yamagata, T. Tropical Indian Ocean variability in the IPCC 20th-century climate simulations. J. Clim. 19, 4397–4417 (2006).

    Google Scholar 

  53. Cai, W., Sullivan, A. & Cowan, T. Interactions of ENSO, the IOD, and the SAM in CMIP3 models. J. Clim. 24, 1688–1704 (2010).

    Google Scholar 

  54. Liu, L., Yu, W. & Li, T. Dynamic and thermodynamic air-sea coupling associated with the Indian Ocean Dipole diagnosed from 23 WCRP CMIP3 models. J. Clim. 24, 4941–4958 (2011).

    Google Scholar 

  55. Zheng, X. T. et al. Indian Ocean Dipole response to global warming in the CMIP5 multimodel ensemble. J. Clim. 26, 6067–6080 (2013).

    Google Scholar 

  56. Meehl, G. et al. The WCRP CMIP3 multimodel Dataset: A New Era in Climate Change Research. Bull. Am. Meteorol. Soc. 88, 1383–1394 (2007).

    Google Scholar 

  57. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experimental design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Google Scholar 

  58. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Google Scholar 

  59. Ishii, M. & Kimoto, M. Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr. 65, 287–299 (2009).

    Google Scholar 

  60. Smith, T. M. & Reynolds, R. W. Improved extended reconstruction of SST (1854–1997). J. Clim. 17, 2466–2477 (2004).

    Google Scholar 

  61. Alley, R. et al. Climate change 2007: The physical science basis, summary for policymakers (World Meteorol. Org., 2007).

    Google Scholar 

  62. Collins, M. et al. A comparison of perturbed physics and multi-model ensembles: Model errors, feedbacks and forcings. Clim. Dyn. 36, 1737–1766 (2011).

    Google Scholar 

  63. Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4340 (2007).

    Google Scholar 

  64. Vecchi, G. A. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006).

    Google Scholar 

  65. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Google Scholar 

  66. Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).

    Google Scholar 

  67. Tokinaga, H., Xie, S-P., Deser, C., Kosaka, Y. & Okumura, Y. M. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature 491, 439–443 (2012).

    Google Scholar 

  68. Dong, B. W. & Lu, R. Y. Interdecadal enhancement of the Walker circulation over the Tropical Pacific in the late 1990s. Adv. Atmos. Sci. 30, 247–262 (2013).

    Google Scholar 

  69. Solomon, A. & Newman, M. Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record. Nature Clim. Change 2, 691–699 (2012).

    Google Scholar 

  70. L'Heureux, M., Lee, S. & Lyon, B. Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nature Clim. Change 3, 571–576 (2013).

    Google Scholar 

  71. Newman M. Winds of change. Nature Clim. Change 3, 538–539 (2013).

    Google Scholar 

  72. Xie, S-P. et al. Global warming pattern formation: sea surface temperature and rainfall. J. Clim. 23, 966–986 (2010).

    Google Scholar 

  73. Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geosci. 3, 391–397 (2010).

    Google Scholar 

  74. Cai, W. & Cowan, T. Why is the amplitude of the Indian Ocean Dipole overly large in CMIP3 and CMIP5 climate models? Geophys. Res. Lett. 40, 1200–1205 (2013).

    Google Scholar 

  75. Weller, E. & Cai, W. Realism of the Indian Ocean Dipole in CMIP5 models: the implication for climate projections. J. Clim. 26, 6649–6659 (2013).

    Google Scholar 

  76. Yuan, D. et al. Timing, duration, and transitions of the Last Interglacial Asian monsoon. Science 304, 575–578 (2004).

    Google Scholar 

  77. Moy, C. M., Seltzer, G. O., Rodbell, D. T. & Anderson, D. M. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162–165 (2002).

    Google Scholar 

  78. Tudhope, A. W., Chilcott, C. P. & McCulloch, M. T. Variability in the El Niño-Southern oscillation through a glacial-interglacial cycle. Science 291, 1511–1517 (2001).

    Google Scholar 

  79. Koutavas, A., Lynch-Stieglitz, J., Marchitto, T. M. & Sachs, J. P. El Niño-like pattern in Ice Age tropical Pacific sea surface temperature. Science 297, 226–230 (2002).

    Google Scholar 

  80. Liu, Z., Brady, E. & Lynch-Stieglitz, J. Global ocean response to orbital forcing in the Holocene. Paleoceanography 18, 1041 (2003).

    Google Scholar 

  81. Ashrit, R. G., Kumar, K. R. & Kumar, K. K. ENSO–monsoon relationships in a greenhouse warming scenario. Geophys. Res. Lett. 28, 1727–1730 (2001).

    Google Scholar 

  82. Zickfeld, K., Knopf, B., Petoukhov, V. & Schellnhuber, H. J. Is the Indian summer monsoon stable against global change? Geophys. Res. Lett. 32, L15707 (2005).

    Google Scholar 

  83. Naidu, C. V. et al. Is summer monsoon rainfall decreasing over India in the global warming era? J. Geophys. Res. 114, D24108 (2009).

    Google Scholar 

  84. Cobb, K. M. et al. Highly variable El Niño-Southern Oscillation throughout the Holocene. Science 339, 67–70 (2013).

    Google Scholar 

  85. Zhang, Y., Wallace, J. M. & Battisti, D. S. ENSO-like interdecadal variability, 1900–93. J. Clim. 10, 1004–1020 (1997).

    Google Scholar 

  86. Kumar, K. K., Rajagopalan, B. & Cane, M. A. On the weakening relationship between the Indian Monsoon and ENSO. Science 284, 2156–2159 (1999).

    Google Scholar 

  87. Ashok, K., Chan, W.-L., Motoi, T. & Yamagata, T. Decadal variability of the Indian Ocean dipole. Geophys. Res. Lett. 31, L24207 (2004).

    Google Scholar 

  88. Du. Y., Cai, W. & Wu, Y. L. A new type of the Indian Ocean Dipole since the mid-1970s. J. Clim. 26, 959–972 (2013).

    Google Scholar 

  89. Annamalai, H., Hamilton, K. & Sperber, K. R. The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J. Clim. 20, 1071–1092 (2007).

    Google Scholar 

  90. Zhang, H. Diagnosing Australia-Asian monsoon onset/retreat using large-scale wind and moisture indices. Clim. Dyn. 35, 601–618 (2010).

    Google Scholar 

  91. Zhang, H., Liang, P., Moise, A. & Hanson, L. The response of summer monsoon onset/retreat in Sumatra–Java and tropical Australia region to global warming in CMIP3 models. Clim. Dyn. 40, 377–399 (2013).

    Google Scholar 

  92. Knutson, T. R. & Manabe, S. & Gu, D. Simulated ENSO in a global coupled ocean–atmosphere model: Multidecadal amplitude modulation and CO2 sensitivity. J. Clim. 10, 138–161 (1997).

    Google Scholar 

  93. Johnson, N. C. & Xie, S-P. Changes in the sea surface temperature threshold for tropical convection. Nature Geosci. 3, 842–845 (2010).

    Google Scholar 

  94. Bony, S. & Dufresne, J. L. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett. 32, L20806 (2005).

    Google Scholar 

  95. Schott, F. A., Xie, S. -P. & McCreary, J. P. Indian Ocean circulation and climate variability. Rev. Geophys. 47, RG1002 (2009).

    Google Scholar 

  96. Sprintall, J. & Tomczak, M. Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res. 97, 7305–7316 (1992).

    Google Scholar 

  97. Godfrey, J. S. & Lindstrom, E. J. The heat budget of the equatorial western Pacific surface mixed layer. J. Geophys. Res. 94, 8007–8017 (1989).

    Google Scholar 

  98. Qu, T. & Meyers, G. Seasonal variation of barrier layer in the southeastern tropical Indian Ocean. J. Geophys. Res. 110, C11003 (2005).

    Google Scholar 

  99. Masson, S., Boulanger, J-P., Menkes, C., Delecluse, P. & Yamagata, T. Impact of salinity on the 1997 Indian Ocean dipole event in a numerical experiment. J. Geophys. Res. 109, C02002 (2004).

    Google Scholar 

  100. Qiu, Y., Cai, W., Li, L. & Guo, X. Argo profiles variability of barrier layer in the tropical Indian Ocean and its relationship with the Indian Ocean Dipole. Geophys. Res. Lett. 39, L08605 (2012).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Climate Change Science Program, the National Basic Research Program of China (2012CB955600), the Goyder Research Institute, and the NFSC (41106010). M.C. was supported by the NERC SAPRISE project (NE/I022841/1). W.Y. was supported by the Chinese State Oceanic Administration Indian Ocean Climate Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenju Cai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, W., Zheng, XT., Weller, E. et al. Projected response of the Indian Ocean Dipole to greenhouse warming. Nature Geosci 6, 999–1007 (2013). https://doi.org/10.1038/ngeo2009

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2009

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing