Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa

Abstract

Mixed crop–livestock systems are the backbone of African agriculture, providing food security and livelihood options for hundreds of millions of people. Much is known about the impacts of climate change on the crop enterprises in the mixed systems, and some, although less, on the livestock enterprises. The interactions between crops and livestock can be managed to contribute to environmentally sustainable intensification, diversification and risk management. There is relatively little information on how these interactions may be affected by changes in climate and climate variability. This is a serious gap, because these interactions may offer some buffering capacity to help smallholders adapt to climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mixed crop–livestock farming in Africa.
Figure 2: Four possible trajectories of crop and livestock systems.
Figure 3: Future climate challenges for mixed systems in Africa.

Similar content being viewed by others

References

  1. Seré, C. & Steinfeld, H. World Livestock Production Systems: Current Status, Issues and Trends (FAO, 1996).

    Google Scholar 

  2. Robinson, T. P. et al. Global Livestock Production Systems. (FAO/ILRI, 2011).

    Google Scholar 

  3. Herrero, M. et al. Smart investments in sustainable food production: Revisiting mixed crop–livestock systems. Science 327, 822–825 (2010).

    Article  CAS  Google Scholar 

  4. Herrero, M. et al. Global livestock systems: Biomass use, production, feed efficiencies and greenhouse gas emissions. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    Article  CAS  Google Scholar 

  5. Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl Acad. Sci. USA 107, 8035–8040 (2010).

    Article  CAS  Google Scholar 

  6. Sumberg, J. Toward a dis-aggregated view of crop–livestock integration in Western Africa. Land Use Policy 20, 253–264 (2003).

    Article  Google Scholar 

  7. Bell, L. W. & Moore, A. D. Integrated crop–livestock systems in Australian agriculture: Trends, drivers and implications. Agric. Syst. 111, 1–12 (2012).

    Article  Google Scholar 

  8. Boserup, E. The Condition of Agricultural Growth: The Economics of Agrarian Change under Population Pressure (Aldine, 1965).

    Google Scholar 

  9. McIntire, J., Bourzat, D. & Pingali, P. Crop–Livestock Interaction in Sub-Saharan Africa (World Bank, 1992).

    Google Scholar 

  10. Steinfeld, H. in Foods, Lands and Livelihoods: Setting the Research Agendas for Animal Science (eds Gill, M. et al.) 53–66 (British Society of Animal Science, 1998).

    Google Scholar 

  11. Baltenweck, I. et al. SLP Project on Transregional Analysis of Crop–Livestock Systems. Level 1 Report: Broad Dimensions of Crop–Livestock Intensification and Interaction across Three Continents (ILRI, 2003).

    Google Scholar 

  12. Herrero, M. et al. Exploring future changes in smallholder farming systems by linking socio-economic scenarios with regional and household models. Glob. Environ. Change 24, 165–182 (2014).

    Article  Google Scholar 

  13. Waithaka, M. M., Thornton, P. K., Shepherd, K. D. & Herrero, M. Bio-economic evaluation of farmers' perceptions of viable farms in western Kenya. Agric. Syst. 90, 243–271 (2006).

    Article  Google Scholar 

  14. Rufino, M. C. et al. Transitions in agro-pastoralist systems of East Africa: impacts on food security and poverty. Agric. Ecosyst. Environ. 179, 215–230 (2013).

    Article  Google Scholar 

  15. Hobbs, N. T. et al. Fragmentation of rangelands: Implications for humans, animals, and landscapes. Glob. Environ. Change 18, 776–785 (2008).

    Article  Google Scholar 

  16. Fritz, S. et al. Mapping global cropland and field size. Glob. Change Biol. 21, 1980–1992 (2015).

    Article  Google Scholar 

  17. Norman, D. & Collinson, M. in Agricultural Systems Research for Developing Countries (ed. Remenyi, J. V.) 16–30 (ACIAR, 1985).

    Google Scholar 

  18. Wood, S. et al. in Food Security and Global Environmental Change (eds Ingram, J. S. I. Ericksen, P. J. & Liverman, D. M.) 46–62 (Earthscan, 2010).

    Google Scholar 

  19. Powell, J. M., Pearson, R. A. & Hiernaux, P. H. Crop–livestock interactions in the West African drylands. Agron. J. 96, 469–483 (2004).

    Article  Google Scholar 

  20. Lemaire, G., Franzluebbers, A., de Faccio Carvalho, P. C. & Dedieu, B. Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agric. Ecosyst. Environ. 190, 4–8 (2014).

    Article  Google Scholar 

  21. van Keulen, H. & Schiere, H. in New Directions for a Diverse Planet, Proc. 4th Int. Crop Science Congress (2004); http://www.cropscience.org.au/icsc2004/symposia/2/1/211_vankeulenh.htm

    Google Scholar 

  22. Russelle, M. P., Entz, M. H., Franzluebbers, A. J. Reconsidering integrated crop–livestock systems in North America. Agron. J. 99, 325–334 (2007).

    Article  Google Scholar 

  23. Challinor, A. J., Parkes, B. & Ramirez-Villegas, J. Crop yield response to climate change varies with cropping intensity. Glob. Change Biol. 21, 1679–1688 (2015).

    Article  Google Scholar 

  24. Roudier, P., Sultan, B., Quirion, P. & Berg, A. The impact of future climate change on West African crop yields: What does the recent literature say? Glob. Environ. Change 21, 1073–1083 (2011).

    Article  Google Scholar 

  25. Knox, J., Hess, T., Daccache, A. & Wheeler, T. Climate change impacts on crop productivity in Africa and South Asia. Environ. Res. Lett. 7, 34032 (2012).

    Article  Google Scholar 

  26. Niang, I. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects (eds Barros, V. R. et al.) 1199–1265 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  27. Porter, J. R. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects (eds Field, C. B. et al.) 485–533 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  28. Thornton, P. K., van de Steeg, J., Notenbaert, A. & Herrero, M. The impacts of climate change on livestock and livestock systems in developing countries: a review of what we know and what we need to know. Agric. Syst. 101, 113–127 (2009).

    Article  Google Scholar 

  29. Dixon, J. L., Stringer, L. C. & Challinor, A. J. Farming system evolution and adaptive capacity: Insights for adaptation support. Resources 3, 182–214 (2014).

    Article  Google Scholar 

  30. Gabrielsson, S., Brogaard, S. & Jerneck, A. Living without buffers: Illustrating climate vulnerability in the Lake Victoria basin. Sustain. Sci. 8, 143–157 (2013).

    Article  Google Scholar 

  31. Kristjanson, P. et al. Understanding poverty dynamics in Kenya. J. Int. Dev. 22, 978–996 (2010).

    Article  Google Scholar 

  32. Ericksen, P. J. et al. Mapping Hotspots of Climate Change and Food Insecurity in the Global Tropics CCAFS Report No. 5 (CGIAR, 2011); https://ccafs.cgiar.org/publications/mapping-hotspots-climate-change-and-food-insecurity-global-tropics#.VbtxxY1dWp8

    Google Scholar 

  33. Jones, P. G. & Thornton, P. K. Croppers to livestock keepers: Livelihood transitions to 2050 in Africa due to climate change. Environ. Sci. Policy 12, 427–437 (2009).

    Article  Google Scholar 

  34. Jones, P. G. & Thornton, P. K. Representative soil profiles for the Harmonized World Soil Database at different spatial resolutions for agricultural modelling applications. Agric. Syst. 139, 93–99 (2015).

    Article  Google Scholar 

  35. Nachtergaele, F. O., Zanetti, M., Bloise, M. & Ataman, E. TERRASTAT Global Land Resources GIS Models and Databases (FAO, 2002).

    Google Scholar 

  36. Boote, K. J., Jones, J. W. & Hoogenboom, G. in Agricultural Systems Modeling and Simulation (eds Peart, R. M. & Curry, R. B.) 651–692 (Marcel Dekker, 1998).

    Google Scholar 

  37. IPCC Summary for Policymakers in Climate Change 2014: Impacts, Adaptation and Vulnerability (eds Field, C. B. et al.) (IPCC, Cambridge Univ. Press, 2014); http://ipcc-wg2.gov/AR5/

  38. Matlon, P. & Kristjanson, P. in Challenges in Dryland Agriculture: A Global Perspective. Proc. Int. Conf. Dryland Farming (eds Unger, P. W., Jordan, W. R., Sneed, T. V. & Jensen, R. W.) 604–606 (Texas Agricultural Experiment Station, 1988).

    Google Scholar 

  39. Cooper, P. J. M. et al. Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change? Agric. Ecosyst. Environ. 126, 24–35 (2008).

    Article  Google Scholar 

  40. Jones, P. G. & Thornton, P. K. Generating downscaled weather data from a suite of climate models for agricultural modelling applications. Agric. Syst. 114, 1–5 (2013).

    Article  Google Scholar 

  41. Thornton, P. K., Ericksen, P. J., Herrero, M. & Challinor, A. J. Climate variability and vulnerability to climate change: A review. Glob. Change Biol. 20, 3313–3328 (2014).

    Article  Google Scholar 

  42. Greatrex, H. et al. Scaling Up Index Insurance for Smallholder Farmers: Recent Evidence and Insights CCAFS Report No. 14 (CGIAR, 2015).

    Google Scholar 

  43. Gonzalez-Estrada, E. et al. Carbon sequestration and farm income in West Africa: Identifying best management practices for smallholder agricultural systems in northern Ghana. Ecol. Econ. 67, 492–502 (2008).

    Article  Google Scholar 

  44. Valbuena, D. et al. Conservation agriculture in mixed crop–livestock systems: Scoping crop residue trade-offs in Sub-Saharan Africa and South Asia. Field Crops Res. 132, 175–184 (2012).

    Article  Google Scholar 

  45. Rufino, M. C. et al. Competing use of organic resources village-level interactions between farm types and climate variability in a communal area of NE Zimbabwe. Agric. Syst. 104, 175–190 (2011).

    Article  Google Scholar 

  46. Tittonell, P. A. et al. Analysing trade-offs in resource and labour allocation by smallholder farmers using inverse modelling techniques: A case-study from Kakamega district, western Kenya. Agric. Syst. 95, 76–95 (2007).

    Article  Google Scholar 

  47. Klapwijk, C. J. et al. Analysis of trade-offs in agricultural systems: Current state and way forward. Curr. Opin. Environ. Sustain. 6, 110–115 (2014).

    Article  Google Scholar 

  48. Ryschawy, J., Choisis, N., Choisis, J. P. & Gibon, A. Paths to last in mixed crop–livestock farming: Lessons from an assessment of farm trajectories of change. Animal 7, 673–681 (2013).

    Article  CAS  Google Scholar 

  49. Bell, L. W., Moore, A. D. & Kirkegaard, J. A. Evolution in crop–livestock integration systems that improve farm productivity and environmental performance in Australia. Europ. J. Agron. 57, 10–20 (2014).

    Article  Google Scholar 

  50. Osman-Elasha, B. et al. Adaptation Strategies to Increase Human Resilience against Climate Variability and Change: Lessons from the Arid Regions of Sudan AIACC Working Paper No. 42 (International START Secretariat, 2006); www.aiaccproject.org

    Google Scholar 

  51. Nhemachena, C. & Hassan, R. Micro-Level Analysis of Farmers' Adaptation to Climate Change in Southern Africa Discussion Paper 00714 (Environment and Production Technology Division, IFPRI, 2007).

    Google Scholar 

  52. Harvey, C. A. et al. Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar. Phil. Trans. R. Soc. B 369, 20130089 (2014).

    Article  Google Scholar 

  53. Thornton, P. K. & Herrero, M. Climate change adaptation in mixed crop–livestock systems in developing countries. Glob. Food Security 3, 99–107 (2014).

    Article  Google Scholar 

  54. Havlík, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl Acad. Sci. USA 111, 3709–3714 (2014).

    Article  Google Scholar 

  55. Glover, J. D. et al. Increased food and ecosystem security via perennial grains. Science 328, 1638–1639 (2010).

    Article  CAS  Google Scholar 

  56. Rivington, M. et al. An integrated assessment approach to conduct analyses of climate change impacts on whole-farm systems. Environ. Model. Softw. 22, 202–210 (2007).

    Article  Google Scholar 

  57. Kalaugher, E., Bornman, J. F., Clark, A. & Beukes, P. An integrated biophysical and socio-economic framework for analysis of climate change adaptation strategies: The case of a New Zealand dairy farming system. Environ. Model. Softw. 39, 176–187 (2013).

    Article  Google Scholar 

  58. Van Etten, J. Crowdsourcing crop improvement in sub-Saharan Africa: A proposal for a scalable and inclusive approach to food security. Inst. Dev. Studies Bull. 42, 102–110 (2011).

    Article  Google Scholar 

  59. Fritz, S. et al. Geo-Wiki: An online platform for improving global land cover. Environ. Model. Softw. 31, 110–123 (2012).

    Article  Google Scholar 

  60. Garnett, T. et al. Sustainable intensification in agriculture: Navigating a course through competing priorities. Science 341, 33–34 (2013).

    Article  CAS  Google Scholar 

  61. Scoones, I. & Wolmer, W. Pathways of Change: Crops, Livestock and Livelihoods in Africa. Lessons from Ethiopia, Mali and Zimbabwe (Institute of Development Studies, Univ. Sussex, 2000).

    Google Scholar 

  62. Vervoort, J. et al. Challenges to scenario-guided adaptive action on food security under climate change. Glob. Environ. Change 28, 383–394 (2014).

    Article  Google Scholar 

  63. Brooks, N. et al. Tracking Adaptation and Measuring Development Climate Change Working Paper No. 1 (IIED, 2011).

    Google Scholar 

  64. Delaney, A. et al. A Systematic Review of Local Vulnerability to Climate Change: In Search of Transparency, Coherence and Compatibility CCAFS Working Paper No. 97 (CGIAR, 2014).

    Google Scholar 

  65. Lipper, L. et al. Climate smart agriculture for food security. Nature Clim. Change 4, 1068–1072 (2014).

    Article  Google Scholar 

  66. Campbell, B. et al. Sustainable intensification: What is its role in climate smart agriculture? Curr. Opin. Environ. Sustain. 8, 39–43 (2014).

    Article  Google Scholar 

  67. You, L. et al. Spatial Production Allocation Model (SPAM) 2000 Version 3 Release 1 (MapSPAM, 2012); http://MapSPAM.info

    Google Scholar 

  68. CIESIN Gridded Population of the World Version 3 (GPWv3): Population Grids (SEDAC, 2005); http://sedac.ciesin.columbia.edu/gpw

Download references

Acknowledgements

P.K.T. acknowledges the support of CCAFS and a CSIRO McMaster Research Fellowship. The CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) is funded by the CGIAR Fund, AusAid, Danish International Development Agency, Environment Canada, Instituto de Investigação Científica Tropical, Irish Aid, Netherlands Ministry of Foreign Affairs, Swiss Agency for Development and Cooperation, Government of Russia, UK Aid and the European Union, with technical support from the International Fund for Agricultural Development. We thank J. Kiplimo for producing the maps.

Author information

Authors and Affiliations

Authors

Contributions

P.K.T. and M.H. designed and wrote the paper together.

Corresponding author

Correspondence to Philip K. Thornton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thornton, P., Herrero, M. Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa. Nature Clim Change 5, 830–836 (2015). https://doi.org/10.1038/nclimate2754

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2754

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing