Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A triaxial supramolecular weave

Abstract

Despite recent advances in the synthesis of increasingly complex topologies at the molecular level, nano- and microscopic weaves have remained difficult to achieve. Only a few diaxial molecular weaves exist—these were achieved by templation with metals. Here, we present an extended triaxial supramolecular weave that consists of self-assembled organic threads. Each thread is formed by the self-assembly of a building block comprising a rigid oligoproline segment with two perylene-monoimide chromophores spaced at 18 Å. Upon π stacking of the chromophores, threads form that feature alternating up- and down-facing voids at regular distances. These voids accommodate incoming building blocks and establish crossing points through CH–π interactions on further assembly of the threads into a triaxial woven superstructure. The resulting micrometre-scale supramolecular weave proved to be more robust than non-woven self-assemblies of the same building block. The uniform hexagonal pores of the interwoven network were able to host iridium nanoparticles, which may be of interest for practical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Woven topologies and illustration of the design principle.
Figure 2: Morphology and structural details of the supramolecular hexagon.
Figure 3: GIWAXS data and molecular organization of the kagome weave.
Figure 4: UV–vis spectroscopy, AFM studies and IrNPs embedded in the kagome weave.

Similar content being viewed by others

References

  1. Soffer, O., Adovasio, J. M. & Hyland, D. C. in Enduring Records: The Environmental and Cultural Heritage of Wetlands (ed. Purdy, B. A.) 233–245 (Oxbow, 2001).

    Google Scholar 

  2. Tyler, T. in Specialist Yarn and Fabric Structures: Developments and Applications (ed. Gong, R. H.) Ch. 7 (Woodhead, 2011).

    Google Scholar 

  3. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Korevaar, P. A. et al. Pathway complexity in supramolecular polymerization. Nature 481, 492–496 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Yu, Z. et al. Simultaneous covalent and non-covalent hybrid polymerizations. Science 351, 497–502 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Han, D. et al. DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Malo, J. et al. Engineering a 2D protein–DNA crystal. Angew. Chem. Int. Ed. 44, 3057–3061 (2005).

    Article  CAS  Google Scholar 

  8. Ponnuswamy, N., Cougnon, F. B. L., Clough, J. M., Pantoş, G. D. & Sanders, J. K. M. Discovery of an organic trefoil knot. Science 338, 783–785 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Chichak, K. S. et al. Molecular borromean rings. Science 304, 1308–1312 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Danon, J. J. et al. Braiding a molecular knot with eight crossings. Science 355, 159–162 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Gil-Ramírez, G., Leigh, D. A. & Stephens, A. J. Catenanes: fifty years of molecular links. Angew. Chem. Int. Ed. 54, 6110–6150 (2015).

    Article  Google Scholar 

  12. Van Calcar, P. M., Olmstead, M. M. & Balch, A. L. Construction of a knitted crystalline polymer through the use of gold(I)–gold(I) interactions. J. Chem. Soc. Chem. Commun. 1773–1774 (1995).

  13. Axtell, E. A. III, Liao, J.-H. & Kanatzidis, M. G. Flux synthesis of LiAuS and NaAuS: ‘chicken-wire-like’ layer formation by interweaving of (AuS)nn threads. Comparison with α-HgS and AAuS (A = K, Rb). Inorg. Chem. 37, 5583–5587 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Carlucci, L., Ciani, G., Gramaccioli, A., Proserpio, D. M. & Rizzato, S. Crystal engineering of coordination polymers and architectures using the [Cu(2,2′-bipy)]2+ molecular corner as building block (bipy = 2,2′-bipyridyl). Cryst. Eng. Commun. 29, 1–10 (2000).

    Google Scholar 

  15. Ino, I. et al. 2-D interwoven and 3-D 5-fold interpenetrating silver(I) complexes of 1-(isocyanidomethyl)-1H-benzotriazole and 1,3-bis(dicyanomethylidene)indan. Inorg. Chem. 39, 4273–4279 (2000).

    CAS  Google Scholar 

  16. Bu, X.-H. et al. A spontaneously resolved chiral molecular box: a cyclic tetranuclear Zn(II) complex with DPTZ (DPTZ = 3,6-di-2-pyridyl-1,2,4,5-tetrazine). Chem. Commun. 971–972 (2000).

  17. Bark, T., Dîggeli, M., Stoeckli-Evans, H. & von Zelewsky, A. Designed molecules for self-assembly: the controlled formation of two chiral self-assembled polynuclear species with predetermined configuration. Angew. Chem. Int. Ed. 40, 2848–2851 (2001).

    Article  CAS  Google Scholar 

  18. Hausmann, J. & Brooker, S. Control of molecular architecture by use of the appropriate ligand isomer: a mononuclear ‘corner-type’ versus a tetranuclear [2 × 2] grid-type cobalt(III) complex. Chem. Commun. 1530–1531 (2004).

  19. Beves, J. E., Danon, J. J., Leigh, D. A., Lemonnier, J.-F. & Vitorica-Yrezabal, I. J. A Solomon link through an interwoven molecular grid. Angew. Chem. Int. Ed. 54, 7555–7559 (2015).

    Article  CAS  Google Scholar 

  20. Payamyar, P., King, B. T., Öttinger, H. C. & Schlüter, A. D. Two-dimensional polymers: concepts and perspectives. Chem. Commun. 52, 18–34 (2016).

    Article  CAS  Google Scholar 

  21. Liu, Y. et al. Weaving of organic threads into a crystalline covalent organic framework. Science 351, 365–369 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, Z. et al. Molecular weaving via surface-templated epitaxy of crystalline coordination networks. Nat. Commun. 8, 14442.

  23. Kümin, M., Sonntag, L. S. & Wennemers, H. Azidoproline containing helices: stabilization of the polyproline II structure by a functionalizable group. J. Am. Chem. Soc. 129, 466–467 (2007).

    Article  PubMed  Google Scholar 

  24. Wilhelm, P., Lewandowski, B., Trapp, N. & Wennemers, H. A crystal structure of an oligoproline PPII-helix, at last. J. Am. Chem. Soc. 136, 15829–15832 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Weingarten, A. S. et al. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production. Nat. Chem. 6, 964–970 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lewandowska, U. et al. Hierarchical supramolecular assembly of sterically demanding π-systems by conjugation with oligoprolines. Angew. Chem. Int. Ed. 53, 12537–12541 (2014).

    CAS  Google Scholar 

  27. Lewandowska, U. et al. Effect of structural modifications on the self-assembly of oligoprolines conjugated with sterically demanding chromophores. Chem. Eur. J. 22, 3804–3809 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Meyer, E. A., Castellano, R. K. & Diederich, F. Interactions with aromatic rings in chemical and biological recognition. Angew. Chem. Int. Ed. 42, 1210–1250 (2003).

    Article  CAS  Google Scholar 

  29. Nishio, M. The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates. Phys. Chem. Chem. Phys. 13, 13873–13900 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Plevin, M. J., Bryce, D. L. & Boisbouvier, J. Direct detection of CH/π interactions in proteins. Nat. Chem. 2, 466–471 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Frischmann, P. D. & Würthner, F. Synthesis of a non-aggregating bay-unsubstituted perylene bisimide dye with latent bromo groups for C–C cross coupling. Org. Lett. 15, 4674–4677 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, Q., Chul Bae, S. & Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–384 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Jonkheijm, P., van der Schoot, P., Schenning, A. P. H. J. & Meijer, E. W. Probing the solvent assisted nucleation pathway in chemical self-assembly. Science 313, 80–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Rueping, M. et al. Size-selective, stabilizer-free hydrogenolytic synthesis of iridium nanoparticles supported on carbon nanotubes. Chem. Mater. 23, 2008–2010 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the VW Foundation for financial support and the ETH Scientific Center for Optical and Electron Microscopy (ScopeM) for support. The authors also acknowledge Beamline 9 of the DELTA electron storage ring in Dortmund for providing synchrotron radiation and technical support for GIWAXS measurements. The authors thank D. Schlüter for discussions and J. Schnabl for the illustration of the supramolecular weave.

Author information

Authors and Affiliations

Authors

Contributions

U.L., W.Z., S.C., J.T. and H.W. conceived the molecular design and elucidated the structure. U.L., W.Z., S.C., J.T., R.B., E.M.B., S.S., K.W., N.A.K.O., R.S. and W.P. designed and carried out the experimental work. U.L., S.C. and H.W. wrote the manuscript with major contributions from R.B., W.Z., W.P. and K.M., as well as input from all other authors. All authors contributed to analysis of the data. K.M. and H.W. directed the research and conceived the overall project.

Corresponding author

Correspondence to Helma Wennemers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 15110 kb)

Supplementary information

Supplementary information (MP4 2180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewandowska, U., Zajaczkowski, W., Corra, S. et al. A triaxial supramolecular weave. Nature Chem 9, 1068–1072 (2017). https://doi.org/10.1038/nchem.2823

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2823

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing