Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Beyond the myth of the supernova-remnant origin of cosmic rays

Abstract

The origin of Galactic cosmic-ray ions has remained an enigma for almost a century. Although it has generally been thought that they are accelerated in the shock waves associated with powerful supernova explosions—for which there have been recent claims of evidence—the mystery is far from resolved. In fact, we may be on the wrong track altogether in looking for isolated regions of cosmic-ray acceleration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible γ-ray emission from an SNR shock wave.

Similar content being viewed by others

References

  1. Shklovskii, I. S. On the origin of cosmic rays. Dokl. Akad. Nauk SSSR 91, 475–478 (1953)

    ADS  Google Scholar 

  2. Berezhko, E. G. & Volk, H. Theory of cosmic ray production in the supernova remnant RX J1713.7-3946. Astron. Astrophys. 451, 981–990 (2006)

    Article  ADS  CAS  Google Scholar 

  3. Katz, B. & Waxman, E. In which shell-type SNRs should we look for gamma-rays and neutrinos from P–P collisions? J. Cosmol. Astropart. Phys. 01(2008)018 (2008)

  4. Erlykin, A. D. & Wolfendale, A. W. The origin of cosmic rays. J. Phys. G 31, 1475–1498 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Butt, Y. et al. X-ray hotspot flares and implications for cosmic ray acceleration and magnetic field amplification in supernova remnants. Mon. Not. R. Astron. Soc. 386, L20–L22 (2008)

    Article  ADS  Google Scholar 

  6. Liu, S. et al. Stochastic electron acceleration in shell-type supernova remnants. Astrophys. J. 683, L163–L166 (2008)

    Article  ADS  Google Scholar 

  7. Warren, J. et al. Cosmic-ray acceleration at the forward shock in Tycho’s supernova remnant: evidence from Chandra X-ray observations. Astrophys. J. 634, 376–389 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Völk, H. J., Berezhko, E. G. & Ksenofontov, L. T. Internal dynamics and particle acceleration in Tycho’s SNR. Astron. Astrophys. 483, 529–535 (2008)

    Article  ADS  Google Scholar 

  9. Hughes, J. P., Rakowski, C. E. & Decourchelle, A. Electron heating and cosmic rays at a supernova shock from Chandra X-ray observations of 1E 0102.2-7219. Astrophys. J. 543, L61–L65 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Helder, E. A. et al. Measuring the cosmic ray acceleration efficiency of a supernova remnant. Science 10.1126/science.1173383 (25 June 2009)

  11. Albert, J. et al. Discovery of very high energy gamma radiation from IC 443 with the MAGIC telescope. Astrophys. J. 664, L87–L90 (2007)

    Article  ADS  CAS  Google Scholar 

  12. Acciari, V. A. et al. (VERITAS collaboration). Observation of extended vhe emission from the supernova remnant IC 443 with VERITAS, Astrophys . J. Lett (in the press)

  13. Aharonian, F. et al. Discovery of very high energy gamma-ray emission coincident with molecular clouds in the W 28 (G6.4–0.1) field. Astron. Astrophys. 481, 401–410 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Tian, W. et al. VLA and XMM-Newton observations of the SNR W41/TeV gamma-ray source HESS J1834–087. Astrophys. J. 657, L25–L28 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Tian, W. et al. Discovery of the radio and X-ray counterpart of TeV γ-ray source HESS J1731–347. Astrophys. J. 679, L85–L88 (2008)

    Article  ADS  CAS  Google Scholar 

  16. Torres, D. F. et al. MAGIC J0616+225 as delayed TeV emission of cosmic rays diffusing from the supernova remnant IC 443. Mon. Not. R. Astron. Soc. 387, L59–L63 (2008)

    Article  ADS  Google Scholar 

  17. Zhang, L. & Fang, J. Nonthermal emission from a radio-bright shell-type supernova remnant IC 443. Astrophys. J. 675, L21–L24 (2008)

    Article  ADS  CAS  Google Scholar 

  18. Bartko, H. & Bernarek, W. γ-ray emission from PWNe interacting with molecular clouds. Mon. Not. R. Astron. Soc. 385, 1105–1109 (2008)

    Article  ADS  CAS  Google Scholar 

  19. Gaisser, T. et al. Gamma-ray production in supernova remnants. Astrophys. J. 492, 219–227 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Yamazaki, R. et al. TeV γ-rays from old supernova remnants. Mon. Not. R. Astron. Soc. 371, 1975–1982 (2006)

    Article  ADS  CAS  Google Scholar 

  21. Colgate, S. & Li, H. in The Role of Neutrinos, Strings, Gravity, and Variable Cosmological Constant in Elementary Particle Physics (eds Kursunoglu, B. N., Mintz, S. L. & Perlmutter, A.) 149–155 (Kluwer Academic, 2001)This manuscript presents some speculative, although truly novel and original, ideas regarding cosmic-ray acceleration.

    Google Scholar 

  22. Strong, A. W., Moskalenko, I. V. & Ptuskin, V. S. Cosmic-ray propagation and interactions in the Galaxy. Annu. Rev. Nucl. Part. Syst. 57, 285–327 (2007)

    Article  ADS  CAS  Google Scholar 

  23. Ellison, D. C., Berezhko, E. G. & Baring, M. G. Nonlinear shock acceleration and photon emission in supernova remnants. Astrophys. J. 540, 292–307 (2000)

    Article  ADS  CAS  Google Scholar 

  24. Krimigis, S. M. Voyager energetic particle observations at interplanetary shocks and upstream of planetary bow shocks – 1977–1990. Space Sci. Rev. 59, 167–201 (1992)

    Article  ADS  Google Scholar 

  25. Fisk, L. A. & Gloeckler, G. Thermodynamic constraints on stochastic acceleration in compressional turbulence. Proc. Natl Acad. Sci. USA 104, 5749–5754 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Duric, N. The origin of cosmic rays in spiral galaxies. Space Sci. Rev. 48, 73–111 (1988)

    Article  ADS  Google Scholar 

  27. Wiedenbeck, M. E. et al. Constraints on the time delay between nucleosynthesis and cosmic-ray acceleration from observations of 59Ni and 59Co. Astrophys. J. 523, L61–L64 (1999)

    Article  ADS  CAS  Google Scholar 

  28. Wiedenbeck, M. et al. in Proc. 28th Int. Cosmic Ray Conf. (eds Kajita, T., Asaoka, Y., Kawachi, A., Matsubara, Y. & Sasaki, M.) 1899–1902 (Universal Academy, 2003)

    Google Scholar 

  29. Binns, W. R. et al. OB associations, Wolf Rayet stars, and the origin of Galactic cosmic rays. Space Sci. Rev. 130, 439–449 (2007)This paper presents arguments for superbubbles having a significant role in Galactic cosmic-ray acceleration, on the basis of the composition of cosmic rays.

    Article  ADS  CAS  Google Scholar 

  30. Parizot, E., Paul, J. & Bykov, A. M. in Proc. 27th Int. Cosmic Ray Conf. 2070–2073 (Copernicus Gesellschaft, 2001)Many of the hidden assumptions that have perpetuated the myth that cosmic rays most likely originate in isolated supernova remnants are outlined in this work.

    Google Scholar 

  31. Seo, E. S. & Ptuskin, V. S. Stochastic reacceleration of cosmic rays in the interstellar medium. Astrophys. J. 431, 705–714 (1994)

    Article  ADS  CAS  Google Scholar 

  32. Hillas, M. J. Can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays? J. Phys. G 31, R95–R131 (2005)

    Article  ADS  CAS  Google Scholar 

  33. Medina-Tanco, G. A. & Opher, R. Spatial and temporal distributed acceleration of cosmic rays by supernova remnants three-dimensional simulations. Astrophys. J. 411, 690–707 (1993)This study suggests that distributed Galaxy-wide acceleration could be an acceptable mechanism for Galactic cosmic-ray acceleration.

    Article  ADS  Google Scholar 

  34. Zirakashvili, V. N. & Völk, H. J. Cosmic ray reacceleration on the galactic wind termination shock. Adv. Space Res. 37, 1923–1927 (2006)

    Article  ADS  Google Scholar 

  35. Völk, H. J. & Zirakashvili, V. N. Cosmic ray reacceleration by spiral shocks in the galactic wind. Astron. Astrophys. 417, 807–817 (2004)

    Article  ADS  Google Scholar 

  36. Abdo, A. et al. (Milagro Collaboration). Discovery of localized regions of excess 10-TeV cosmic rays. Phys. Rev. Lett. 101, 221101 (2008)

    Article  ADS  CAS  Google Scholar 

  37. Drury, L. & Aharonian, F. The puzzling MILAGRO hot spots. Astropart. Phys. 29, 420–423 (2008)

    Article  ADS  Google Scholar 

  38. Higdon, J. C. & Ligenfelter, R. E. OB associations, supernova-generated superbubbles, and the source of cosmic rays. Astrophys. J. 628, 738–749 (2005)

    Article  ADS  CAS  Google Scholar 

  39. Tang, S. & Wang, Q. D. Supernova blast waves in low-density hot media: a mechanism for spatially distributed heating. Astrophys. J. 628, 205–209 (2005)

    Article  ADS  Google Scholar 

  40. Butt, Y. M. & Bykov, A. M. A cosmic-ray resolution to the superbubble energy crisis. Astrophys. J. 677, L21–L22 (2008)

    Article  ADS  Google Scholar 

  41. Abdo, A. A. et al. TeV gamma-ray sources from a survey of the galactic plane with Milagro. Astrophys. J. 664, L91–L94 (2007)

    Article  ADS  CAS  Google Scholar 

  42. Grenier, I. A., Casandjian, J.-M. & Terrier, R. Unveiling extensive clouds of dark gas in the solar neighborhood. Science 307, 1292–1295 (2005)

    Article  ADS  CAS  Google Scholar 

  43. Woermann, B. et al. Kinematics of the Gum nebula region. Mon. Not. R. Astron. Soc. 325, 1213–1227 (2001)

    Article  ADS  CAS  Google Scholar 

  44. Yamaguchi, N. et al. Distribution and kinematics of the molecular clouds in the Gum nebula. Publ. Astron. Soc. Jpn. 51, 765–774 (1999)

    Article  ADS  CAS  Google Scholar 

  45. Pidopryhora, Y., Lockman, F. J. & Shields, J. C. The Ophiuchus superbubble: a gigantic eruption from the inner disk of the Milky Way. Astrophys. J. 656, 928–942 (2007)

    Article  ADS  CAS  Google Scholar 

  46. Büsching, I. et al. Cosmic-ray propagation properties for an origin in supernova remnants. Astrophys. J. 619, 314–326 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Part of this work was carried out while the author was a fellow at the National Academy of Sciences. The support of a NASA Long Term Space Astrophysics grant is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousaf Butt.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butt, Y. Beyond the myth of the supernova-remnant origin of cosmic rays. Nature 460, 701–704 (2009). https://doi.org/10.1038/nature08127

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08127

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing