Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Adaptive evolution in the stomach lysozymes of foregut fermenters

Abstract

The convergent evolution of a fermentative foregut in two groups of mammals offers an opportunity to study adaptive evolution at the protein level. The appearance of this mode of digestion has been accompanied by the recruitment of lysozyme as a bacteriolytic enzyme in the stomach both in the ruminants (for example the cow) and later in the colobine monkeys (for example the langur). The stomach lysozymes of these two groups share some physicochemical and catalytic properties that appear to adapt them for functioning in the stomach fluid1,2. To examine the basis for these shared properties, we sequenced langur stomach lysozyme and compared it to other lysozymes of known sequence. Tree analysis suggests that, after foregut fermentation arose in monkeys, the langur lysozyme gained sequence similarity to cow stomach lysozyme and evolved two times faster than the other primate lysozymes. This rapid evolution, coupled with functional and sequence convergence upon cow stomach lysozyme, could imply that positive darwinian selection has driven about 50% of the evolution of langur stomach lysozyme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. 1. Dobson, D. E., Prager, E. M. & Wilson, A. C. /. biol. Chem. 259, 11607-11616 (1984). 2. Stewart, C.-B. R. thesis, Univ. Calif., Berkeley (1986). 3. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge, 1983). 4. Perutz, M. F. Molec. Biol EvoL 1, 1-28 (1983). 5. Hill, R. E. & Hastie, N. D. Nature 326, 96-99 (1987). 6. Laskowski, M. Jr et al. Biochemistry 26, 202-221 (1987). 7. Brown, A. L. Nature 326, 12-13 (1987). 8. Fleming, A. Lancet 216, 217-220 (1929). 9. Jolles, P. & Jolles, J. Molec. cell Biochem. 63, 165-189 (1984). 10. Bauchop, T. & Martucci, R. W. Science 161, 698-700 (1968). 11. Olivers, D. J. & Hladik, C. M. J. Morph. 166, 337-386 (1980). 12. Padgett, G. A. & Hirsch, J. G. Aust. J. exp. Biol. med. Sci. 45, 569-570 (1967). 13. Pahud, J.-J., Schellenberg, D., Monti, J. C. & Scherz, J. C. Ann. Rech. Vet. 14,493-501 (1983). 14. Prieur, D. J. Comp. Biochem. Physiol. 85B, 349-353 (1986). 15. Wilson, A. C., Carlson, S. S. & White, T. J. A. Rev. Biochem. 46, 573-639 (1977). 16. Goodman, M. Prog. Biophys. molec. Biol. 38, 105-164 (1981). 17. Sarich, V. M. & Cronin, J. E. in Molecular Anthropology (eds Goodman, M. & Tashian, R. E.) 141-170 (Plenum, New York, 1976). 18. Stewart, C.-B., Dobson, D. E. & Wilson, A. C. Am. J. phys. Anthrop. 63, 222 (1984). 19. Haas, O. & Simpson, G. G. Proc. Am. phil. Soc. 90, 319-349 (1946). 20. Zuckerkandl, E. & Pauling, L. in Evolving Genes and Proteins (eds Bryson, V. & Vogel, H. J.) 97-166 (Academic, New York, 1965). 21. Sneath, P. H. A. & Sokal, R. R. Numerical Taxonomy (Freeman, San Francisco, 1973). 22. Peacock, D. & Boulter, D. /. molec. Biol. 95, 513-527 (1975). 23. Weaver, L. H. et al. J. molec. Evol. 21, 97-111 (1985). 24. Creighton, T. E. Proteins: Structures and Molecular Properties (Freeman, New York, 1983). 25. Romero-Herrera, A. E., Lehmann, H., Joysey, K. A. & Friday, A. E. Phil. Trans. R. Soc. B283, 61-163 (1978). 26. Liao, H., McKenzie, T. & Hageman, R. Proc. natn. Acad. Sci. U.S.A. 83, 576-580 (1986). 27. Stewart, C.-B. & Wilson, A. C. Cold Spring Harb. Symp. quant. Biol. 52 (in the press). 28. Rodriguez, R., Menendez-Arias, L., Gonzalez de Buitrago, G. & Gavilanes, J. G. Biochem. Internat. 11, 841-843 (1985). 29. Pervaiz, S. & Brew, K. Arch Biochem. Biophys. 246, 846-854 (1986). 30. Hammer, M. F., Schilling, J. W., Prager, E. M. & Wilson, A. C. / molec. Evol. 24, 272-279 (1987). 31. Felsenstein, J. PHYLIP (Phylogeny Inference Package) Version 3.0 Manual (University of Washington, Seattle, 1987). 32. Jolles, P. et al. J. biol. Chem. 259, 11617-11625 (1984). 33. McKenzie, H. A. & Shaw, D. C. Biochem. Intl 10, 23-31 (1985). 34. Hunkapiller, M. W., Hewick, R. M., Dreyer, W. J. & Hood, L. E. Meth. Enzym. 91,399-413 (1983). 35. Hunkapiller, M. W. & Hood, L. E. Meth. Enzym. 91, 486-493 (1983). 36. Drapeau, G. R. Meth. Enzym. 47, 189-191 (1977). 37. Strydom, D. J. et al. Biochemistry 24, 5486-5494 (1985). 38. Huang, H. V., Bond, M. W., Hunkapiller, M. W. & Hood, L. E. Meth. Enzym. 91, 318-324 (1983). 39. Swofford, D. L. PAUP: Phylogenetic Analysis Using Parsimony, Version 2.4 (Illinois Natural History Survey, Champaign, Illinois, 1985).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, CB., Schilling, J. & Wilson, A. Adaptive evolution in the stomach lysozymes of foregut fermenters. Nature 330, 401–404 (1987). https://doi.org/10.1038/330401a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/330401a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing