Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystallization of an inorganic phase controlled by a polymer matrix

Abstract

BIOLOGICAL composite materials such as bones, teeth and shells consist of a polymer matrix reinforced by an inorganic phase which forms in the matrix1. These materials are distinguished from synthetic composites by the high degree of organization and regularity displayed by the inorganic phase: inorganic minerals of uniform size, morphology and crystallographic orientation can be formed in ordered arrays in living cells. Such a process has until now not been realized in synthetic systems, although the recent interest in nanoscience2–6has stimulated much research in the area. We report here an example of a synthetic process that produces composite materials analogous to those produced by natural biomineralization. The inorganic/organic in situ synthesized composites display controlled inorganic crystal size, morphology and orientation, which are determining features of type II, or matrix-mediated7, biocomposites. The synthetic factors that must be optimized to give biomimetic properties to synthetic composites are strong binding of the inorganic reagents by the organic matrix (molecular complementarity); good 'solvation' of the inorganic reagents by the polymer; and an ordered, regular polymer environment in which to induce nucleation (matrix preorganization)1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mann, S. Nature 322, 119–124 (1988).

    Article  ADS  Google Scholar 

  2. Mann, S., Heywood, B. R., Rajam, S. & Birchall, J. D. Nature 334, 692–694 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Azoz, N., Calvert, P. D., Kadim, M., McCaffery, A. J. & Seddon, K. Nature 344, 49–51 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Berman, A., Addadi, L. & Weiner, S. Nature 331, 546–548 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Fendler, J. H. Chem. Rev. 87, 877–899 (1987).

    Article  CAS  Google Scholar 

  6. Andres, R. P. et al. J. Mater. Res. 4, 704–736 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Calvert, P. & Mann, S. J. Mater. Sci. 23, 3801–3815 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Herron, N. et al. J. Am. chem. Soc. 111, 530–540 (1989).

    Article  CAS  Google Scholar 

  9. Abel, E. W. & Jenkins, C. R. J. Organometall. Chem. 14, 285–287 (1968).

    Article  CAS  Google Scholar 

  10. Rossetti, R., Ellison, J., Gibson, J. M. & Brus, L. E. J. chem. Phys. 80, 4464–4469 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Yuan, T., Cabasso, I. & Fendler, J. H. Chem. Mater. 2, 226–229 (1990).

    Article  CAS  Google Scholar 

  12. Xu, S., Zhao, X. K. & Fendler, J. H. Adv. Mater. 2, 183–185 (1990).

    Article  CAS  Google Scholar 

  13. Steigerwald, M. L. et al. J. Am. chem. Soc. 110, 3046–3050 (1988).

    Article  CAS  Google Scholar 

  14. Iwamoto, I., Saito, Y., Isihara, H. & Tadokoro, H. J. Polym. Sci. 6, 1509–1525 (1968).

    CAS  Google Scholar 

  15. Mann, S. Struct. Bond. (Berlin) 54, 125–174 (1983).

    Article  CAS  Google Scholar 

  16. Osugi, J., Shimuzu, K., Nakamura, T. & Onoder, A. Rev. Phys. Chem. Jap. 36, 59–73 (1966).

    CAS  Google Scholar 

  17. Dameron, C. T. et al. Nature 338, 596–597 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Dameron, C. T. & Winge, D. R. Inorg. Chem. 29, 1343–1348 (1990).

    Article  CAS  Google Scholar 

  19. Landau, E. H., Levanon, M., Leiserowitz, L., Lahav, M. & Sagiv, J. Nature 318, 353–356 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Mann, S. J., Heywood, B. R., Rajam, S. & Birchall, J. D. Nature 334, 692–695 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Mann, S., Frankel, R. B. & Blakemore, R. P. Nature 310, 405–407 (1985).

    Article  ADS  Google Scholar 

  22. Mann, S. et al. Adv. Mater. 2, 257–261 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianconi, P., Lin, J. & Strzelecki, A. Crystallization of an inorganic phase controlled by a polymer matrix. Nature 349, 315–317 (1991). https://doi.org/10.1038/349315a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349315a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing