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Introduction

Cell polarity is vital for the development of multicellular 
organisms and for the proper functions of epithelial cells in 

different organs. Polarity in epithelial cells is characterized 
by different lipid and protein components in the apical and 
basolateral surface domains. Tight junctions (TJs) act as 
occluding barriers to maintain cell polarity and homeosta-
sis, and regulate permeability among epithelial cells [1]. 
Three major TJs protein complexes, Crumbs complex, 
Scribble complex and Par3-Par6-aPKC complex, play 
important roles in the assembly of TJs [2]. Moreover, there 
is increased evidence indicating that these complexes and 
their associated proteins may mediate two major types of 
signals: signals relayed from the intracellular compartments 
towards TJs regulating their assembly and function; and 
signals propagated from the TJs into the cells modulating 
gene expression, cell proliferation and differentiation as 
well as other functions [2, 3].

The Par3/Par6/aPKC complex is an evolutionarily con-
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The partitioning-defective 3 (Par3), a key component in the conserved Par3/Par6/aPKC complex, plays fundamental 
roles in cell polarity. Herein we report the identification of Ku70 and Ku80 as novel Par3-interacting proteins through 
an in vitro binding assay followed by liquid chromatography-tandem mass spectrometry. Ku70/Ku80 proteins are two 
key regulatory subunits of the DNA-dependent protein kinase (DNA-PK), which plays an essential role in repairing 
double-strand DNA breaks (DSBs). We determined that the nuclear association of Par3 with Ku70/Ku80 was enhanced 
by g-irradiation (IR), a potent DSB inducer. Furthermore, DNA-PKcs, the catalytic subunit of DNA-PK, interacted with 
the Par3/Ku70/Ku80 complex in response to IR. Par3 over-expression or knockdown was capable of up- or downregulat-
ing DNA-PK activity, respectively. Moreover, the Par3 knockdown cells were found to be defective in random plasmid 
integration, defective in DSB repair following IR, and radiosensitive, phenotypes similar to that of Ku70 knockdown 
cells. These findings identify Par3 as a novel component of the DNA-PK complex and implicate an unexpected link of 
cell polarity to DSB repair. 
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served regulator of cell polarity that plays a central role in 
forming and maintaining TJs in vertebrate epithelial cells 
and in specifying neuronal polarity and also in determining 
asymmetric cell division [4-8]. The Drosophila orthologue 
of Par3, Bazooka, mediates the asymmetric localization 
of inscuteable in neuroblast asymmetric cell division and 
colocalizes with DaPKC and DmPar6 in the apical cortex 
[9]. Thus, it appears that the function of Par3 in cell po-
larity is conserved across evolution. Additionally, recent 
studies indicate that Par3 may function in other biological 
contexts. For instance, over-expression of Par3 in 3T3-L1 
adipocytes was found to inhibit insulin-stimulated glucose 
uptake and insulin-dependent translocation of the glucose 
transporter GLUT4 to the plasma membrane [10]. ASIP-sa 
(an alternatively spliced form of Par3 with the aPKC bind-
ing site) and its interaction with aPKC might contribute to 
malignant growth and the blocking of Fas/FasL-mediated 
apoptosis, while ASIP-sb (an alternatively spliced form of 
Par3 without the aPKC binding site) might function as an 
antagonist of ASIP-sa [11]. In addition, the study by Gao et 
al. [12] indicates that a fraction of Par3 does not complex 
with Par6/aPKC and functions as a “free” form in the cy-
tosol. Taken together, these results suggest that Par3 might 
play additional roles besides establishing cell polarity.

Par3 consists of a conserved region in its N-terminus, 
three PDZ domains in the middle and the aPKC binding 
site in the C terminus. PDZ domain is an important module 
for signal transduction in cells [13]. Because Par3 may 
conduct numerous different cellular tasks, we explored 
potential Par3-binding partners using a glutathione S-
transferase (GST) pull-down assay with the three Par3 
PDZ domains, PDZ1, PDZ2 and PDZ3, fused to GST as 
baits. We report here the identification of 70-kDa (Ku70) 
and 80-kDa (Ku80) heterodimeric subunits of the DNA-
dependent protein kinase (DNA-PK) as Par3-interacting 
factors. Ku70 and Ku80 interact with the DNA-PK catalytic 
subunit (DNA-PKcs) to form the DNA-PK complex that 
regulates the repair of DNA double-strand breaks (DSBs) 
[14, 15]. Subsequent functional analyses revealed a sub-
stantial role for Par3 in DSB repair. Our findings suggest 
that Par3 may function as a new component in the DNA-PK 
complex and implicate an unexpected link between cell 
polarity and DSB repair.

Materials and Methods

Cell lines and reagents
A431, Caco2, HeLa and human embryonic kidney 293T cell lines 

were from ATCC (USA). Minimum essential medium (MEM), Dul-
becco’s modified Eagle’s medium (DMEM) and newborn calf serum 
were from Gibco (USA). Lipofectamine 2000 was purchased from 
Invitrogen (Life technologies, USA). Etoposide was purchased from 
Sigma. Proteinase inhibitor cocktail tablets inhibit a broad spectrum 

of serine and cysteine proteases were from Roche (USA).

Cell culture
All cell lines used were cultured in MEM or DMEM supplemented 

with 10% newborn calf serum. For the exogenous expression of 
proteins in the 293T cells, we used the calcium-phosphate-medi-
ated transfection method. In the HeLa cells, we conducted the 
transient transfections with LipofectamineTM 2000 according to the 
manufacturer’s instructions.

Constructs
The full-length Ku70 and Ku80 cDNAs were obtained by ampli-

fying the Ku70 and Ku80 genes from a human liver cDNA library 
using the following primers: 5′-CGG ATC CAG CCA ACA TGT 
CAG GGT GGG AG-3' (Ku70 forward), 5′-CGG GGC CCG TCC 
TGG AAG TGC TTG GTG AGG G-3' (Ku70 reverse), 5′-CGG AAT 
TCA TGG TGC GGT CGG GGA ATA AGG-3' (Ku80 forward), 
and 5′-GCT CTA GAT ATC ATG TCC AAT AAA TCG TCC ACA 
TC-3' (Ku80 reverse). We cloned the full-length Ku70 and Ku80 
into the pcDNA3VSV plasmid (gifted from Axel). The Par3 180K 
plasmid was kindly provided by Dr Ian G Macara (University of 
Virginia, USA).

The constructs encoding GST fusion proteins of the ZO-1 PDZ1 
domain, N-terminal region (1-273 aa) and C-terminal region (400-609 
aa) of Ku70 were generated by subcloning the fragments in-frame 
into pGEX-5X-1. The C terminus (LCT, position 1 111-1 353 aa) of 
Par3 long form (180 kDa form) (gifted from Dr Macara, USA) was 
amplified and then inserted into pGEX-5X-3. PDZ2-3 domain of 
PTPBAS (1 327-1 612 aa), Par3 PDZ1 domain (251-385 aa), Par3 
PDZ2 (425-549 aa), Par3 PDZ2 plus B23 linker (PDZ2+, 425-595 
aa), Par3 PDZ3 (577-694 aa), Par3 PDZ3 plus B23 linker (PDZ3+, 
531-694 aa), Par3 B23 linker (B23 531-595 aa) and Par3 PDZ2-3 
(425-695) were amplified and inserted in-frame into pGEX2T (Amer-
sham Pharmacia Biotech). The His-tagged PDZ2-3 domains of Par3 
were generated by inserting the PDZ2-3 domain into pET-3E-His 
(Novagen, Germany). 

GST fusion proteins were produced in Escherichia coli DH5a or 
BL21DE, and purified on glutathione sepharose 4B using a standard 
procedure. The His-tagged fusion proteins were expressed from BL-
21DE and purified on TALON Metal Affinity Resin (Clontech, USA), 
according to a standard protocol. The sequences of the Par3 siRNA 
duplexes (siRNA1: GAAACGAAAGCAGAAGAUG, siRNA2: AG-
GUGAUAAGACUGAUAGA), GFP siRNA control (GFP siRNA: 
GCAAGCTGACCCTGAAGTTC) and Ku70 (siRNA1: sense GCU-
CUGCUCAUCAAGUGUCUG; siRNA2: UCCUUGACUUGAUG-
CACCUGA; siRNA3: ACGGAUCUGACUACUCACUCA; siR-
NA4: sense ACGAAUUCUAGAGCUUGACCA) were synthesized 
by Genechem (China). HeLa cells were twice co-transfected with 
the indicated siRNAs to suppress proteins expression.

Antibodies
The Ku70, Ku80 and DNA-PKcs monoclonal antibodies were 

purchased from Santa Cruz (Santa Cruz, USA). The Par3 rabbit 
antisera (anti-Par3LCT and anti-Par3 PDZ2-3 antibodies) were gener-
ated against the GST fusion proteins of the Par3 PDZ2-3 and the C 
terminus, respectively, which were expressed by the aforementioned 
GST constructs. The Par3 C terminal antisera were first incubated 
with purified GST proteins bound to glutathione beads, and then were 
purified by GST-Par3/LCT antigen immobilized on glutathione beads 
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(anti-Par3LCT). The Ku70 rabbit antisera were generated against the 
GST fusion proteins of the Ku70 N and C terminus expressed by 
the GST-tagged constructs. The Ku80 rabbit antisera were produced 
against the GST fusion proteins of the Ku80 C terminus (554-732 
aa). The goat anti-mouse and goat anti-rabbit secondary antibodies 
were purchased from Bio-Rad (USA). The Cy2- and Cy3-conjugated 
goat anti-mouse antibodies were purchased from Jackson Immu-
noResearch Laboratories (USA). The polyclonal and monoclonal 
DNA-PKcs antibodies against pT2609 were from Dr Benjamin Chen 
and David Chen (Southwestern Medical Center).

In vitro binding assay
Cells were lysed with 1 ml of lysis buffer (50 mM HEPES pH 

7.5, 1% Triton X-100, 150 mM NaCl, 1 mM NaF, 100 µmol PMSF 
and Cocktail) and incubated with 3 µg purified GST fusion proteins 
conjugated to glutathione 4B beads. The beads were washed three 
times with HNTG buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 
0.1% Trition-X-100, 10% glycerol) and eluted with SDS sample 
buffer. Proteins were separated by SDS-PAGE and analyzed by 
Coomassie blue staining. 

Nuclear fractionation 
This method was adapted from a previous protocol [16]. Briefly, 

the HeLa cells were supplemented with hypotonic buffer (10 mM 
Tirs-Cl, 25 mM KCl, 10 mM NaCl, 1 mM MgCl2, 0.1 mM EDTA, 
1 mM NaF (pH 7.2) and Cocktail) and were scraped off and passed 
through a 25-g needle five times, and centrifugated at 1 000 r.p.m. for 
10 min at 4 °C. The resulting crude nuclear pellets were suspended 
with cell lysis buffer Ι (50 mM HEPES (pH 7.5), 10% glycerol, 
0.5% Triton X-100, 150 mM NaCl and Cocktail) and centrifugated 
at 13 000 r.p.m. for 60 min at 4 °C. The final nuclear pellets were 
dissolved with RIPA buffer (50 mM HEPES (pH 7.5), 1% Triton X-
100, 0.1% SDS, 150 mM NaCl, 1% deoxycholatic sodium, 1 mM 
NaF and Cocktail) and sonicated on ice.

Immunoprecipitation and immunoblotting
Cells were lysed with 1 ml RIPA buffer. The lysates were quanti-

fied using the Bradford assay and were subjected to immunoprecipita-
tion with 3 µl anti-sera. The lysates were incubated with protein A 
beads overnight at 4 °C, and the beads were washed 4-6 times with 
HNTG and eluted with SDS loading buffer. The proteins were sepa-
rated by one-dimensional SDS-PAGE, and analyzed by immunoblot-
ting with the indicated antibodies. The antibodies were detected by 
enhanced chemiluminescence. The densities of western bands were 
measured with Quantity One software (Bio-Rad, USA).

Immunofluorescence
Cells grown on glass cover slips (Fisher, USA) were washed 

several times with ice-cold PBS and fixed with −20 °C methanol for 
3-5 min. The cells were then blocked in TBST containing 1% BSA 
for 1 h at room temperature. Antibody incubations were performed 
at 37 °C for 2 h in TBST containing 1% BSA. The secondary antibodies 
used were Cy2-conjugated goat anti-rabbit or Cy3-conjugated goat 
anti-mouse IgG. Cover slips were mounted using PERMAFLUOR 
aqueous mounting medium (Immunotech, France) and analyzed with 
a laser-scanning confocal microscope (Leica, Germany).

Ionizing radiation and etoposide treatment
For irradiation, the cells were exposed to indicated Gy of g-irradia-

tion at a rate of 0.98 Gy/min and recovered in a 37 °C, humidified 
incubator for the indicated time. A Gammacell-40 exactor (Nordion, 
Canada) containing a 137Cs was used as an ionizing radiation source. 
Etoposide was added to the DMEM medium for 1 h, and the cells 
were lysed and used in the immunoprecipitation assays.

Random plasmid integration
Random plasmid integration was carried out by transfection of the 

linearized pEGFPC1 expression plasmid. Twenty-four hours later, 
cells were re-plated at low density in G418-containing medium, 
and colonies were counted when the control non-transfected cells 
were all dead.

DNA-PK assay
Whole-cell extracts (WCE) were prepared using the method 

described by Allalunis-Turner et al. [17]. The cells were washed 
with ice-cold PBS, and the WCE were prepared, adjusting the WCE 
concentration for equal protein content. DNA-PK Assay Kit was from 
Promega (USA), and the subsequent steps of the assay were carried 
out as described by the manufacturer’s protocol. 

Pulsed-field gel electrophoresis and colony formation assays
Pulsed-field gel electrophoresis (PFGE) was carried out as 

described before [18]. Cells were harvested and about 1×105 cells 
were embedded in 1% low-melting agarose. Plugs were incubated 
overnight at 55 °C in 3 ml lysis buffer (50 mM Tris (pH 8.0), 50 mM 
EDTA (pH 8.0), 2% sarcosyl, 2 mg/ml proteinase K) and washed 
five times with 3 ml of TE at room temperature. Electrophoresis of 
the prepared samples was performed using the CHEF-DR® II Pulsed 
Field Electrophoresis Systems (BioRad, USA). Electrophoretic con-
ditions were as indicated. The colony formation assay was performed 
as described previously [19].

Results

Ku70/Ku80 specifically interacts with Par3 in vitro and 
in vivo

To identify proteins that interact with Par3 PDZ domains, 
GST fusion proteins of PDZ1 and 2-3 domains of Par3 
(Supplementary information, Figure S1A) were gener-
ated and employed in pull-down assays using lysates of 
HeLa and A431 cells. The proteins captured by the GST 
fusion proteins were resolved by SDS polyacrylamide gel 
electrophoresis (SDS-PAGE). As detected by Coomassie 
blue staining, two proteins with the molecular weights 
of 70 and 80 kDa co-purified specifically with the GST-
PDZ2-3 fusion protein, but not with the GST control or the 
GST-PDZ1 protein (Supplementary information, Figure 
S1B and data not shown). The two bands were excised 
and analyzed further by liquid chromatography-tandem 
mass spectrometry (LC-MS/MS). Thirteen peptides were 
identified, six of which matched Ku70 and seven of which 
matched Ku80 (Supplementary information, Figure S1B). 
The mass spectrometry maps of several identified peptides 
of Ku70 and Ku80 are shown in Supplementary informa-
tion, Figure S1C.
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Figure 1 Ku70 and Ku80 bind specifically to the PDZ2-3 domains of Par3. (A) Ku70 and Ku80 associate with PDZ2-3 domains of 
Par3. A431 cells and HeLa cells were lysed and incubated with GST-tagged PDZ2-3 domains of Par3 bound to glutathione beads. 
Proteins were detected as indicated. (B) Ku70 mediates the interaction of Ku70/Ku80 with PDZ2-3 domains of Par3. 293T cells 
transiently transfected with an empty vector, Ku70, Ku80 or Ku70/Ku80 were lysed and incubated with the GST-tagged PDZ2-3 
of Par3 bound to glutathione beads, respectively. Proteins were detected as indicated. Aliquots of lysates from the transfected and 
untransfected cells were run as controls. (C) Alignment of amino-acid sequences of different PDZ domains by the Clustal program. 
(D) Ku70 and Ku80 specifically associate with PDZ2-3 domains of Par3. HeLa cell lysates were mixed with the indicated GST fusion 
proteins (1 µg) and the immunoblots were probed as indicated. (E) Association of endogenous Ku70/Ku80 with exogenous Par3. 
293T cells were transfected with Par3 as indicated. Proteins were immunoprecipitated from 293T cell lysates and immunoblotted 
as indicated. (F) The association of Par3 with Ku70/Ku80 occurs endogenously. HeLa cell lysates were immunoprecipitated with 
antibodies against Ku70 or Par3. Associated proteins were probed as indicated.
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To confirm the binding of Par3 to the Ku70/Ku80 het-
erodimer, HeLa cell lysates and A431 cell lysates were 
mixed with GST or the GST-tagged PDZ2-3 domains 
of Par3. Monoclonal antibodies against Ku70 and Ku80 
detected the presence of these endogenous proteins in the 
fraction bound to GST-PDZ2-3, but not in that of the GST 
control (Figure 1A). To verify the interaction between the 
Ku and Par3 proteins, we transfected constructs encod-
ing vesicular stomatitis virus (VSV)-tagged Ku70 and/or 
Ku80 into 293T cells. Western blot analysis revealed that 
the GST- PDZ2-3 fusion protein pulled down Ku70 alone 
and Ku70/Ku80 together, but not Ku80 alone (Figure 1B), 
suggesting that Ku70 may mediate the interaction between 
Par3 and the Ku complex. To test the specificity of the 
Par3-Ku70 interaction, we constructed several GST-fusion 
proteins with the PDZ domains derived from the protein ty-
rosine phosphatase PTPBAS and the tight junction protein 
Zonula Occludens-1 (ZO-1), which are homologous to the 
Par3 PDZ domains (Figure 1C). As shown in Figure 1D, 
only the GST-fusion protein harboring the Par3 PDZ2-3 
domains could bind to endogenous Ku70/Ku80 in HeLa 
cell lysates. These data indicate that the PDZ2-3 domains 
of Par3 bind specifically to Ku70.

To further confirm the physical interaction of Par3 with 
the Ku complex, immunoprecipitations using antibodies 
against Ku70 or Ku 80 were performed in the 239T cells 
transfected with either an empty vector or the construct en-
coding Par3. As shown in Figure 1E, Par3 co-precipitated 
with Ku70 and Ku80. 

To further document the physiological relevance of the 
interaction, immunoprecipitation of endogenous Ku70 was 
conducted in HeLa cells. As shown in Figure 1F, the endog-
enous Par3 co-immunoprecipitated with the heterodimeric 
Ku70/Ku80 complex but this did not occur with the control 
serum. Reciprocally, when endogenous Par3 was precipi-
tated, Ku proteins were also specifically co- precipitated. 
Since Ku proteins are DNA-binding proteins, to exclude the 
possibility that DNA mediates the interaction between Par3 
and Ku70/Ku80, we treated the Par3 immunoprecipitates 

with micrococcal nuclease, or added ethidium bromide 
(EB), which is known to disrupt protein-DNA interactions 
[20], to the lysates before performing immunoprecipitation. 
Our data showed that DNA did not mediate Par3-Ku as-
sociation (Supplementary information, Figure S2). These 
results clearly demonstrated that Par3 forms a physiological 
complex with the Ku heterodimer in vivo.

The linker between the PDZ2 and PDZ3 domains within 
Par3 mediates the interaction with the N-terminus of 
Ku70

As we demonstrated above, Ku70 interacts with a re-
gion in the Par3 PDZ2-3 domains. To pinpoint the region 
required in PDZ2-3 for this interaction, we generated a 
Par3 mutant lacking the PDZ2-3 domains (denoted herein 
as Par3∆PDZ2-3). Par3 or Par3∆PDZ2-3 were transfected 
into 293T cells, and immunoprecipitation was performed 
using the antibody against Ku70. As expected, Par3 but 
not Par3∆PDZ2-3 could interact with Ku70 (Figure 2A), 
indicating that the Par3 PDZ2-3 region is essential for 
mediating the Par3 interaction with Ku70. The Par3 PDZ2-
3 region is composed of the PDZ2 and PDZ3 domains 
separated by a linker region, denoted herein as B23. To 
refine the binding site responsible for the Ku70 interac-
tion within the PDZ2-3 region, various recombinant GST 
fusion proteins spanning the PDZ2 and PDZ3 domains 
were generated (Figure 2B). Those GST fusion proteins 
were incubated with the lysates from HeLa cells for in 
vitro binding assays. Surprisingly, neither the Par3 PDZ2 
nor the PDZ3 domain could bind to Ku70/K80. However, 
the B23-linker bound specifically to Ku70/Ku80 (Figure 
2C). Interestingly, the PDZ2 domain appears to potentiate 
this interaction, whereas the PDZ3 domain seems to inhibit 
the binding (Figure 2C, lanes 4 and 6).

Ku70 contains an N-terminal Von Willebrand factor A 
(VWA) domain, as well as a central Ku70/Ku80 interaction 
domain and a C-terminal DNA-binding SAP (named after 
SAF-A/B, Acinus and PIAS) domain. To define the region 
of Ku70 that mediates the Par3 interaction, GST-Ku70N 

Figure 2 Ku70 interacts directly with the Par3 linker region between the PDZ2 and PDZ3 domain via its N terminus. (A) The do-
main on Par3 responsible for its interaction with Ku70 localizes in its PDZ2-3 domains. 293T cells were transfected with Par3 and 
Par3∆PDZ2-3 as indicated. Proteins were immunoprecipitated from 293T cell lysates with antibody against Ku70. Immunoblots 
were carried out as indicated. (B) Schematic diagram of different regions in Par3 PDZ2 and PDZ3 domains. The binding abilities of 
the GST fusion proteins to Ku70 are summarized in B (right panel). (C) Par3 interacts with Ku70 via its linker region. The indicated 
GST fusion proteins were bound to Sepharose beads and then incubated with HeLa cell lysates. The immunoblots were probed as 
indicated. Total cell lysates were loaded on the right. (D) Schematic representation of Ku70, showing the regions used in GST fusion 
proteins. (E) His-PDZ2-3 of Par3 binds directly to the N terminal domain of Ku70. Purified PDZ2-3 domains of Par3 carrying the 
histidine tag was incubated with GST fusion proteins of Ku70 immobilized on Sepharose beads. The associated His-PDZ2-3 was 
detected with antibody against the histidine tag. Input His-PDZ2-3 was shown on the right. The binding abilities of the GST fusion 
proteins to Par3 were summarized in (D) (right panel).
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and -Ku70C fusion proteins were generated (Figure 2D). 
For the in vitro binding assay, the purified histidine (His)-
tagged PDZ2-3 domains of Par3 were incubated with the 
two GST fusion proteins of Ku70. As shown in Figure 
2E, only the Ku70N GST fusion protein containing the 
VWA domain retrieved the purified His-tagged PDZ2-3 
protein, whereas GST alone or the C-terminal Ku70 fusion 
protein did not. Taken together, our data indicate that the 

linker B23 region of Par3 mediates a direct and selective 
binding to the N-terminal region of Ku70, possibly via the 
VWA domain. 

Par3 localizes on the membranes and in the nuclei of 
HeLa cells

To investigate the biological significance of Par3-Ku70/
Ku80 interaction, we first need to know where the inter-

Figure 3 Par3 localizes both on the membrane and in the nucleus in HeLa cells. (A) Different sub-cellular fractions of Caco-2 and 
HeLa cells were prepared. Mem: membrane fraction; Cyto: cytosolic fraction; Nuc: nuclear fraction. Immunoblots were carried out 
as indicated. (B) The staining pattern using the purified Par3 polyclonal antibodies (anti-Par3LCT) in Caco-2 cells. Caco-2 cells were 
fixed and stained with the anti-Par3LCT antibodies, and DAPI staining was used to visualize the nuclei of cells. GST-Par3LCT was 
the antigen used to immunize rabbits to raise the antibodies against Par3. (C) The localization Par3 in HeLa cells. HeLa cells were 
treated and stained as in (B). The enlarged Par3 signal on the membrane is shown on the left. Scare bar: 10 µm.
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action occurs in the cells. Ku70/Ku80 mainly localize in 
the nucleus, playing an important role in DNA repair. To 
determine the cellular localization of Par3, we conducted 
sub-cellular fractionation experiments to determine the 
sub-cellular distributions of Par3 in Caco-2 and HeLa 
cells. Par3 was clearly detected in both the membrane and 
nuclear fractions, and at relatively low level in the cytosol 
by Western blot using the antibody against the Par3 C-ter-
minus (anti-Par3LCT) (Figure 3A). To confirm the sub-cel-
lular distribution pattern of Par3 in Caco-2 and HeLa cells, 
immunostaining with the purified anti-Par3LCT antibody 
revealed that the specific signals clearly located to the mem-
brane and in the nucleus (Figure 3B and 3C). Since TJs in 
most tumor cells are abnormal [21], the membrane signal 
of Par3 is not in the entire cell-cell junctions as shown by 
confocal scanning in HeLa cells. These results demonstrate 
that Par3 is localized in the nuclei, membranes and cytosol 
in HeLa and Caco-2 cells. The same results were obtained 

with the purchased Par3 antibodies (Supplementary infor-
mation, Figure S3A).

g-irradiation and etoposide enhance interaction of Par3 
with Ku proteins

Ku70 and Ku80 were identified as nuclear proteins that 
play essential roles in DSB repair [22, 23]. g-Irradiation 
and the radiomimetic chemical etoposide (ETO) are induc-
ers for DSBs. To begin to probe whether the Par3-Ku70 
interaction is involved in DSB repair, we monitored their 
interaction in HeLa and Caco-2 cells irradiated with 10 
Gy, and found that the association of Par3 with Ku70 was 
increased notably in response to g-irradiation (Figure 4A 
and 4B). In addition, treating Caco-2 cells with ETO also 
enhanced the interaction of Par3 with Ku70 (Figure 4C). 
The data presented herein demonstrate that DNA damage 
inducers strengthen the Par3-Ku70 interaction, suggesting 
that Par3 may be involved in DSB repair via its interac-

Figure 4 g-Irradiation positively regulates the binding between Ku and Par3. HeLa cells (A) or Caco2 cells (B) were irradiated 
with 10 Gy and lysed at the indicated time. Immunoprecipitations and immunoblots were carried out as indicated. (C) Caco-2 cells 
were treated with 10 µM ETO for 1 h and lysed. Immunoprecipitations and immunoblots were performed as indicated. The data are 
representative of three repeated experiments. *p<0.05 vs control.
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tion with the Ku proteins upon DSB damage induction. 
As described earlier, using the EB blocking assay, we 
excluded the possibility that DNA may play a direct role 

in mediating the Par3-Ku70 interaction (Supplementary 
information, Figure S4).

Figure 5 g-Irradiation enhances Par3 nuclear translocation and its co-localization with Ku70. (A-C) HeLa cells treated with or without 
10 Gy IR were sub-fractionated. Par3 levels in the three fractions were detected. The data are representative of three independent 
experiments. *p<0.05 vs control. (D) The nuclear fraction of HeLa cells treated with IR or untreated were prepared and immuno-
precipitated with antibody against Par3. Immunoblots were probed as indicated. (E) HeLa cells were untreated or irradiated by 10 
Gy and allowed to recover for 2 h after IR. Thereafter, the cells were fixed and stained with Par3 (green) or Ku70 (red) antibodies. 
Scare bar: 10 µm.
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g-irradiation enhances nuclear localization of Par3, lead-
ing to complex formation with the DNA-PK

Since the DNA repair process occurs in the nucleus, 
we sought to determine whether g-irradiation affected the 
nuclear localization of Par3 and subsequently its interac-
tion with the Ku proteins in the nucleus. For these experi-
ments, we performed sub-cellular fractionation assays in 
HeLa cells treated with or without g-irradiation. We found 
that the protein level of Par3 was enhanced in the nuclear 
fraction in response to g-irradiation, as compared to that in 
the control cells (Figure 5A). However, this phenomenon 
was not observed in the membrane and cytosolic fractions 
(Figure 5B and 5C). The co-precipitation assays with 
anti-Par3 demonstrated that g-irradiation remarkably in-
duced the association of Par3 with Ku70 and Ku80 in the 
nuclear fraction (Figure 5D). Both Ku and the catalytic 
subunit of DNA-PK (DNA-PKcs) are involved in DSB 
repair [24]. Interestingly, we detected DNA-PKcs in the 
immunoprecipitates of Par3 in the nuclear fraction only 
after IR treatment (Figure 5D), indicating that Par3 com-
plexed with the herterodimer Ku proteins and DNA-PKcs 
in response to g-irradiation. To further address this issue, 
irradiated or non-irradiated HeLa cells were immunostained 
with Par3 and Ku70 antibodies, and analyzed by confocal 
microscopy. As shown in Figure 5E, some co-localization 
of Par3 and Ku70 was observed in the non-irradiated cells 
(Figure 5E, c). After the ionizing radiation, Par3 in the 
nucleus was increased notably (Figure 5E, e). The co-lo-
calization of Par3 with Ku70 in the nucleus was enhanced 
when compared to that in the control cells (Figure 5E, g). 
These results suggest that DSB damage may regulate the 
nuclear translocation of Par3 and promote its association 
with the DNA-PK holoenzyme.

Par3 enhances DNA-PK activity as assayed both in vitro 
and in vivo

To investigate the biological significance of the Par3-
Ku70 interaction, we assessed the effect of Par3 on DNA-
PK activity using the in vitro DNA-PK kinase activity 
assay. HeLa cells were transfected with either an empty 
vector, wild-type Par3 or Par3∆B23, which lacks the B23-
linker mediating the Par3 interaction with Ku70. WCE were 
then prepared and assayed for DNA-PK activity in vitro 
using a commercial kit as described in Materials and Meth-
ods. We found that the DNA-PK activity was significantly 
upregulated in the cells transfected with wild-type Par3 
compared to the control cells, while the DNA-PK activity 
was markedly downregulated by Par3∆B23 (Figure 6A). 
The dominant-negative effect of Par3∆B23 on DNA-PK 
activity may be due to its ability to form a dimer with the 
wild-type Par3 [25, 26].

Currently, the in vivo substrate of DNA-PK remains 

elusive except for DNA-PKcs itself. Phosphorylation of 
the DNA-PKcs at Thr2609 is implicated in DNA-PK acti-
vation [27-29]. The anti-pThr2609 polyclonal antibodies 
recognize this modified residue specifically. Thus, anti-
pThr2609 antibody is used to monitor DNA-PK activation 
in vivo. HeLa cells transiently transfected with the pcDNA3 
control, Par3 or Par3/∆B23 constructs were treated with or 
without 10 Gy γ-irradiation. After a 2-h recovery period, 
phosphorylation of DNA-PKcs was analyzed by western 
blot using the anti-pT2609 antibody. IR induced Thr2609 
phosphorylation of DNA-PKcs, and the phosphorylation 
was potentiated by Par3 over-expression while it was clear-
ly attenuated in cells over-expressing Par3∆B23 (Figure 6B 
and 6C). These results suggest that the association between 
Par3 and Ku70 may play a positive role in regulating DNA 
damage-induced DNA-PK activation.

To further investigate the role of Par3 in DNA-PK acti-
vation, we attempted the knockdown of endogenous Par3 
by siRNA. The expression of endogenous Par3 in HeLa 
cells was efficiently suppressed by the Par3 siRNA (Figure 
6D). HeLa cells transfected with the Par3 siRNA or control 
siRNA were treated with or without IR, DNA-PKcs was 
then immunoprecipitated from these cells and analyzed by 
western blot using the anti-pT2609 antibody. As shown in 
Figure 6E, Thr2609 phosphorylation of DNA-PKcs was 
substantially reduced when Par3 expression was reduced by 
the specific siRNA as compared to that in the control cells. 
Taken together, our data indicate that Par3 plays an impor-
tant in role in DNA-PK activation in response to IR.

Par3 is required for efficient DNA repair and cell survival 
following DNA damage

DNA-PK-dependent non-homologous end-joining 
(NHEJ) is a predominant DSB repair pathway in mam-
malian cells. It is well known that NHEJ is crucial for the 
efficient random integration of plasmid DNA into the ge-
nome of transfected cells [30]. As expected, we found that 
random plasmid integration was markedly impaired in cells 
downregulated for Ku70 (Figure 7A). Interestingly, knock-
down of Par3 also significantly reduced plasmid integration 
efficiency (Figure 7A), consistent with the notion that Par3 
is involved in NHEJ. To further verify this, we performed 
PFGE to monitor the repair of IR-induced DSBs in vivo. 
HeLa cells were transfected with siRNAs targeting Par3 
or Ku70 or a control siRNA, and after allowing time for 
protein downregulation, we treated the cells with 70 Gy of 
IR. HeLa cells transfected with the control siRNA were able 
to repair most DSBs quickly after irradiation (loss of the 
faster-migrating DNA signal), while cells downregulated 
for Par3 or Ku70 displayed higher levels of broken DNA 
molecules migrating into the gel, and this was the case at 
both early and later time points following IR (Figure 7B). 
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Figure 6 Par3 regulates DNA-PK activity as assayed both in vitro and in vivo. (A) DNA-PK activity in cell lysates assayed in vitro is 
notably upregulated by Par3 over-expression. WCE were prepared from HeLa cells transfected with Par3 or Par3∆B23, and DNA-PK 
activities were measured using the DNA-PK Assay System as described in Materials and Methods. The expression levels of Par3 and 
Par3∆B23 are shown on the right. *p<0.05. (B, C) Regulation of DNA-PKcs Thr2609 phosphorylation in vivo. HeLa cells transfected 
with the indicated constructs were mock-treated or irradiated with 10 Gy. Two hours post-irradiation, WCE were prepared and im-
munoblotted with pT2609. Afterwards, the same blots were stripped and re-probed with the DNA-PKcs monoclonal antibody. The 
expression of Par3 and Par3∆B23 were indicated on the right. The data are representative of three repeated experiments. *p<0.05 vs 
control. (D) Knockdown of Par3 in HeLa cells. HeLa cells were transfected with the two siRNA fragments and lysed 4 days post-
transfection. Immunoblots were probed as indicated. (E) Thr2609 phosphorylation of DNA-PKcs is compromised in cells with sup-
pressed expression of Par3. Left: HeLa cells transfected with control siRNA or Par3 siRNA were lysed and immunoprecipitated with 
monoclonal antibody against DNA-PKcs. Immunoblots were carried out as indicated. Right: Equal amounts of total proteins from cells 
transfected with control siRNA or Par3 siRNA were loaded and then were immunoblotted with the indicated antibodies.
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These data indicate that Par3 is required for efficient DSB 
repair in HeLa cells.

Phosphorylated H2AX (gH2AX) and quantitative analy-
sis of gH2AX foci following IR are often used for monitor-
ing DSB sites and the efficiency of DNA repair, respectively 
[29, 31-34]. Our analyses revealed that cells transfected 
with the control siRNA could repair DSBs efficiently; 
however, DSB repair in the Par3 or Ku70 knockdown cells 
was compromised (Figure 7C), further supporting the no-
tion that Par3 positively regulates DSB repair. 

To investigate the biological significance of Par3 in DNA 
damage repair, the radiation sensitivity of Par3 or Ku70 
knockdown cells or that of the control cells was examined 
by assaying their colony-forming ability following IR 
treatment. As expected, knockdown of Ku70 decreased 
cell survival substantially after IR, and moreover, the Par3 
downregulated cells also displayed significantly reduced 
survival rates below those of the control cells (Figure 7D). 
Therefore, Par3 is important for cell survival following 
IR. Taken together, our functional analyses provide clear 
evidence that Par3 is required for efficient repair of DSBs 
and for optimum cell survival following IR-induced DNA 
damage.

Discussion

In this study, we present a number of independent ob-

servations that document a specific interaction between the 
nuclear protein complex Ku heterodimer and the TJ protein 
Par3. First, we used GST pull-down assays and LC-MS/MS 
identification to show that Par3 interacts specifically with 
Ku70. Second, we determined that Par3 localizes in the 
nucleus and co-precipitates with Ku from the nuclear ex-
tracts of HeLa cells. Moreover, we showed that γ-irradiation 
and ETO, both of which are potent DNA damage inducers, 
remarkably enhanced the Par3-Ku70 association. Third, 
γ-irradiation induces nuclear co-localization of the two pro-
teins in vivo. Finally, the interaction between Par3 and Ku 
regulates the activity of DNA-PK, which participates in the 
DSB repair process. These biochemical and morphological 
observations, as well as our functional analyses, provide 
compelling evidence of a nuclear complex consisting of 
Par3, Ku and DNA-PK in different cell types. 

Par3 was found to localize in the nucleus under several 
different experimental conditions in our study (Figure 3B 
and 3C, and data not shown). Furthermore, immunofluores-
cence assays detected the nuclear labeling of Par3 in three 
different cell lines, including Caco-2, HeLa and MDCK, 
using two different antibodies against two distinct portions 
of the Par3 polypeptide (Figure 3B and 3C and Supple-
mentary information, Figure S3A). VSV- or GFP-tagged 
Par3 constructs were clearly detectable in the nuclei of 
transfected cells (Supplementary information, Figure S3C 
and S3D). Similar phenomenon of Par3 nuclear localiza-
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tion was also observed by other groups [35, 36]. Because 
this pattern of Par3 was detected with different antibodies 
and methods, it is highly unlikely that the nuclear staining 
of Par3 represents non-specific or cross-reactive effects. 
Moreover, the Par3 nuclear localization appears to correlate 
with biologically significant events, specifically its interac-
tion with DNA-PK, which was enhanced by γ-irradiation 
in the nuclear fraction (Figure 5D). γ-Irradiation treatment 
in HeLa cells significantly increased the co-localization 
between Par3 and Ku70 in the nucleus (Figure 5E). It seems 
unlikely that the nuclear localization of Par3 is due to diffu-
sion followed by non-specific trapping within the nucleus, 
because Par3 is a large protein (180 kDa). Proteins of this 
size would likely require an active transport process through 
the nuclear pore complex [37]. Sequence analysis of Par3 
reveals two K/R-rich stretches of amino acids, KHRK and 
KKPR (Supplementary Figure S3B), which are similar to 
the nuclear localization signal (NLS) in simian virus 40 
large T antigen, and may serve as putative nuclear local-
ization sequences. There are also two stretches of peptides 
similar to Xenopus nucleoplasmin NLSs [37]. We have not 
yet determined whether these sequences are responsible for 
the nuclear enrichment of Par3. However, over-expression 
of a mutant form of Par3, Par3ΔCT, lacking all the putative 
NLSs, could still be detected in the nucleus, although at a 
lower percentage (about 30%) than the wild-type protein 
(approximate 40%) (Supplementary information, Figure 
S3C and S3D). It is interesting to note that when expression 
of a cDNA encoding the last C-terminal 378 amino acids 
of Par3 (Par3CT), including all four putative NLSs, this 
mutant form of Par3 is exclusively accumulated within the 
nucleus (100%; Supplementary information, Figure S3C 
and S3D). It should also be pointed out that Par3 may not 
require an NLS of its own, since many nuclear localizing 
proteins interact with NLS-containing partner proteins to 
gain nuclear entry via a “piggyback” mechanism [38, 39]. 
Whether Par3 can direct its own nuclear entry or uses an 
associated partner remains to be determined. Although Ku 
proteins are predominantly nuclear proteins, they are also 
reported to localize on the membrane and in the cytosol in 
different cell lines [40-43]. Although we were able to detect 
both Ku and DNA-PKcs in the membrane and cytosol frac-
tions using sub-fractionation and western blot assays, Par3 
was associated with Ku70/Ku80, but not with DNA-PKcs 
in these fractions. Thus, the DNA-PKcs does not form a 
complex with Par3/Ku70/Ku80 on the membrane (data not 
shown). On the other hand, we observed a clear increase in 
the association of Par3 and DNA-PK, and detected phos-
phorylated DNA-PK in the nuclear fraction in response to 
IR. Along with the data that over-expression or knockdown 
of Par3 affected DNA-PK activation compared to that in 
the control cells (Figure 6), we propose that Par3 regulates 

DNA-PK activity in response to IR in the nucleus.

Par3 functions in DSB repair
In mammalian cells, NHEJ repairs DSBs created by 

ionizing radiation or during V(D)J recombination. Seven 
NHEJ factors have been identified: Ku70, Ku80, the DNA-
dependent protein kinase catalytic subunit (DNA-PKcs), 
Artemis, XRCC4, DNA Ligase IV and Cernunnos/XLF. 
The Ku70/Ku80 heterodimer forms a ring that preferen-
tially binds to double-strand DNA ends. Ku70/ Ku80 bound 
to DNA ends recruits DNA-PKcs, which forms a complex 
with the Artemis nuclease. DNA-PKcs may tether the ends, 
while Artemis nucleolytically processes DNA ends prior to 
joining. The Cernunnos/XLF protein forms complexes with 
XRCC4, DNA Ligase IV, or XRCC4 and Ligase IV simul-
taneously [44, 45]. However, the exact role of Cernunnos-
XLF in DNA DSB repair and V(D)J recombination remains 
to be defined. Our data indicate that DNA damage induced 
by IR or ETO enhanced the interaction of Ku70 with Par3 
(Figure 4), which is consistent with our immunostaining 
data showing a higher degree of Par3 and Ku co-localiza-
tion in the nucleus following DNA damage (Figure 5E). 
In addition, the increased association of Par3 with chromo-
somal DNA (Supplementary information, Figure S5), and 
the partial co-localization of Par3 with the pT2609 form 
of DNA-PKcs and gH2AX in the nucleus in response to 
IR (data not shown), suggests that Par3 may play a role in 
DSB repair. This is in line with the observation that over-
expression and knockdown of Par3 increase and decrease 
DNA-PK activity, respectively. Also, Par3 knockdown cells 
are defective in random plasmid integration, defective in 
repair of DSBs after IR and radiosensitive. Taken together, 
these data indicate that Par3, likely through its action on 
DNA-PK, is involved in DSB rejoining, implicating Par3 
as a novel component involved in NHEJ. 

Currently the precise role of Par3 in NHEJ pathway is 
unclear. However, since Par3 is a scaffold protein that plays 
a key role in establishing cell polarity and TJs, and Ku may 
serve to tether the free ends of the DSBs to the nuclear ma-
trix [46], it is plausible that Par3 may function as a scaffold 
to facilitate DNA repair by anchoring the DNA repair appa-
ratus to the broken chromatin. Introduction of DSBs rapidly 
changes some aspects of higher-order chromatin structure 
in order to facilitate DNA repair [47-49]. Another potential 
role of Par3 in DSB repair may be to transmit chromatin-
changing signals to DNA-PK and trigger the activation of 
DNA-PK, which in turn initiates the DNA repair process 
by phosphorylating its downstream targets.

Intercellular junctions and DNA damage repair 
TJ proteins localize on the membrane to take part in 

TJ establishment and maintenance. There are many lines 
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of evidence indicating that TJ proteins also travel to other 
sub-cellular locations (including the nucleus) to exert tran-
scriptional/translational or other cellular regulatory activi-
ties. For example, the TJ-associated protein Symplekin was 
reported to participate in nuclear as well as cytoplasmic 
polyadenylation, suggesting that it may contribute to as yet 
unexplored functions, such as regulation of mRNA stability 
and localization [50]. TJ protein zonula occluden-2 (ZO-2) 
regulates TJ assembly and maintenance in quiescent epithe-
lial cells. On the other hand, in sub-confluent MDCK cells, 
it translocates to the nucleus in proliferating cells, where 
it may interact with the hnRNP protein SAF-B, as well as 
bind and inhibit transcription factors AP-1 and C/EBP [51]. 
Interestingly, ZO-1 was also reported to translocate to the 
nucleus in sub-confluent MDCK and LLC-PK1 cells. How-
ever, the biological significance of ZO-1 nuclear transloca-
tion remains unclear. In fact, we also clearly detected more 
Par3 nuclear localization in sub-confluent MDCK cells than 
the confluent MDCK cells (Supplementary information, 
Figure S6). In sub-confluent Coco-2 cells, more Par3 in the 
nucleus was also observed (Figure 3B). Collectively, these 
data indicated that TJ proteins, such as ZO-2, ZO-1 and 
Par3, may have distinct functions in different sub-cellular 
localizations [52]. In other words, the data may suggest 
that epithelial cell polarity may directly connect to nuclear 
functions through the TJ proteins. 

It is worth noting that when cells are in rapid growth or 
transformation, the polarity of these cells is usually attenu-
ated or even lost [53, 54]. Two special isoforms of Par3 
may be involved in proliferation and apoptosis in hepatoma 
cells through unidentified pathway(s) [11]. Epithelial-mes-
enchymal transition (EMT) was defined by the formation 
of mesenchymal cells from epithelia. Loss or attenuation 
of epithelial polarity is the hallmark of EMT, which occurs 
in development and cancer progression [55]. The junction 
proteins localize differently in proliferating (mesenchyma) 
or TJ-containing (epithelia) cells, which may be reminiscent 
of their separate functions [56]. It is also widely appreci-
ated that the specialized structures at cell contacts (such as 
TJs, adherent junctions and desmosomes) are focal points 
for cell-cell signaling pathways implicated in growth and 
differentiation, and the different roles of the TJ proteins 
may be achieved through regulating their variant sub-cel-
lular locations.

Sub-confluent cells presumably divide more frequently 
than confluent cells, and it was also implicated that in the 
rapidly growing cells DSBs might arise occasionally from 
closely spaced (single-strand breaks) SSBs or following 
replication of ROS-induced damage. Also, DSBs might 
arise when telomeres become critically shortened [44]. In 
addition, NHEJ takes place throughout the cell cycle and is 
the predominant DSB-rejoining mechanism in the G1 phase 

[57]. Thus, we propose that Par3 may play two distinct roles 
in regulating the formation of TJs (in TJ-forming cells) on 
the membrane as well as in participating in repairing the 
spontaneously occurring DSBs in the nucleus in the different 
physiological or pathological states of cells.

In fact, intercellular contact has long been considered to 
be critically important in mediating the cellular response 
to IR [58, 59]. We are interested in learning whether Par3 
activities in the nucleus and on the membrane are connected, 
but we did not observe any detectable Par3 variation in the 
membrane fraction 2 h following IR (Figure 5B). How-
ever, there are indications for TJs’ roles in the cellular and 
pathological processes following exposure to radiation. For 
instance, TJs in MDCK cells exposed to ionizing irradia-
tion were disassembled [60, 61]. Recently, an interesting 
investigation by Zitzelsberger et al. [62] showed that Par3 
gene was strongly amplified in radiation-transformed reti-
nal pigment epithelial cell lines, suggesting that Par3 may 
function in radiation-induced carcinogenesis. In addition, 
cellular response to ionizing radiation is cell shape-sensi-
tive [63]. It was then noticed that three-dimensional cell 
contact decreased the radiosensitivity of mammalian cells 
as compared to those in monolayer cultures. This form of 
resistance to killing by ionizing radiation was called the 
“contact” effect [64, 65]. Whether the positive regulatory 
function of Par3 in DSB repair and its role in sustaining cell 
survival after IR are related to the potential involvement of 
Par3 in radiation-induced carcinogenesis or contact effect 
awaits further investigation.
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