Reviews & Analysis

Filter by:

  • Topological materials are extensively studied in condensed matter physics and several have been studied to the point where it is now time to ask if these unique materials have a role to play in next generation technologies. The author reviews the current status of well-characterized topological materials such as Bi2Se3 for electronic device applications, focusing on selected technological aspects and their promise for engineering applications.

    • Matthew J. Gilbert
    Review Article Open Access
  • Gravitational wave astronomy has opened the door to test general relativity and the effect of gravity in the Universe. The authors present the capabilities of an overlap between space gravitational wave detectors LISA and Taiji to constrain the Hubble constant to 0.5%, in 10 years, and what can be learned from the satellite pilot Taiji-1 launched in 2019.

    • Yue-Liang Wu
    • Zi-Ren Luo
    • Zi-Ming Zou
    Perspective Open Access
  • Interrogating emergent nonequilibrium phenomena in light-driven quantum materials requires probing microscopic spin, charge and orbital excitations at ultrafast timescales. In this Perspective, time-resolved resonant inelastic X-ray scattering is discussed as a nascent method to investigate photoinduced states of matter.

    • Matteo Mitrano
    • Yao Wang
    Perspective Open Access
  • The neutron-rich, weakly bound fluorine isotope 29F has been extensively investigated theoretically, but its significance has been revived by recent experiments. The authors present the latest developments and make prediction on the electromagnetic transitions occurring in this isotope that may be observed in the near future.

    • L. Fortunato
    • J. Casal
    • A. Vitturi
    Perspective Open Access
  • Drawing around 140 attendees to the serene hills of Tuscany, Italy, February’s Gordon Research Conference (GRC) on Ultrafast Phenomena in Cooperative Systems explored recent advances in the understanding of light-induced phases of condensed matter.

    • Daniel T. Payne
    Meeting Report Open Access
  • Quantum information processing holds promise to achieve more secure data transfer in the current network of telecommunication fibres. Here, the authors review recent works implementing spatial division multiplexing in optical fibres and discuss their potential for quantum communication in classical networks.

    • Guilherme B. Xavier
    • Gustavo Lima
    Review Article Open Access
  • Optical frequency combs were realized nearly two decades ago to support the development of the world’s most precise atomic clocks, but their versatility has since made them useful instruments well beyond their original goal, and spans across a wide variety of fundamental and applied physics in a wide range of wavelengths. Fortier and Baumann present a comprehensive review of developments in optical frequency comb technology and a view to the future with these technologies.

    • Tara Fortier
    • Esther Baumann
    Review Article Open Access
  • Magnonics involves the manipulation of spin waves in order to develop more energy efficient spintronics devices which do not rely on the movement of electronic charge. Here, the authors review the various methods designed to control magnonics with particular focus on voltage i.e. electric-field.

    • Bivas Rana
    • YoshiChika Otani
    Review Article Open Access
  • Quantum communication and computing is now in a data-intensive domain where a classical network describing a quantum system seems no longer sufficient to yield a generalization of complex networks methods to the quantum domain. The authors review recent progress into this paradigm shift that drives the creation of a network theory based fundamentally on quantum effects.

    • Jacob Biamonte
    • Mauro Faccin
    • Manlio De Domenico
    Review Article Open Access
  • For both fundamental and applied sciences topological states of matter is an area of intense research and most investigations are dedicated to realizing these materials using electronic and optical methods. Here the authors review recent efforts in a third avenue of research which seeks to emulate topological states using acoustics.

    • Xiujuan Zhang
    • Meng Xiao
    • Johan Christensen
    Review Article Open Access