Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Revived interest in proton-boron fusion has been fuelled by new laser matter interaction schemes with several possible applications. The authors report on a tabletop laser experiment that observes proton-boron fusion with an emphasis on the secondary cross-section peak around 150 keV.
The generation of spin-current is integral for the successful development of spintronic devices however the orbital counterpart is also expected to be potentially advantageous. Here, using Ni/Ti bilayers, in combination with tight binding calculations, the authors investigate the spin torque efficiency that occurs as a result of the orbital Hall effect, observing that orbital currents can propagate over longer distances than the spin currents.
The single-photon isolator is in high demand for optical communications and optical information processing in the quantum regime, but the noise is still a limitation. Here, the author theoretically propose a noiseless single-photon isolator scheme and demonstrate experimentally using hot atoms.
Magnetic molecules have chemically tunable electronic states that could be used for quantum technologies, but they are often surrounded by a nuclear spin bath causing decoherence. In this study, the authors experimentally investigate the electron-nuclear coupling approaching the clock transition and develop a simple theoretical model which gives a good qualitative understanding of the observed dynamics.
To celebrate our 5 year anniversary we present a collection of some of our favourite articles selected by editors and Editorial Board Members. Also, don't forget to cast your vote for our top feature image!
Pim provided a very quick and thorough review, appreciated the topic of the paper but checked all computations in the main article and the supplementary information and raised points aimed at verifying or strengthening the claims of the paper.
Tracy Berry and James Grieve have joined our Editorial Board. Tracy is an experimental high energy particle physicists, with lots of experience on colliders; James's research centres around the practical implementation of quantum communications technologies. We are looking forward to working with them.
Communications Physics has a 2-year impact factor of 6.497 (2021), a mean decision times of 8 days to first editorial decision and 50 days to first post-review decision (2022).
Precise modelling of solar cells devices under various conditions is essential to guide improvements in optimisation and performance of future technologies. Here, the authors present a holistic numerical model, verified with real-world data of thin-film CIGS modules, that can conduct loss analysis and predict the energy yield of thin film solar cells.
Electron-phonon coupling plays a fundamental role in the properties of conventional superconductors and is typically understood using BCS theory. Here, the authors study electron-phonon dynamics in the weak-coupling regime of Eliashberg theory identifying the similarities and differences between the two models in the dirty limit.
Fast and high-resolution Fourier transform spectrometers are indispensable for cutting-edge infrared spectroscopy. In this study, the authors employed a newly-designed fast-rotating retroreflective, broadband delay line demonstrating fast dual-comb spectroscopy with a single mid-infrared optical comb from a quantum cascade laser emitting at 8 micrometers.
“Previous studies investigating the creation of optical frequency combs through parametric modulation of microresonators rely on lumped-element models that do not consider how the modulations are spatially distributed. The current study underscores the crucial role of these spatial distributions in SNAP bottle microresonators, particularly in producing optical frequency combs with low repetition rate.
Spin dynamics induced by intense terahertz pulses are commonly observed by magnetooptical effects. Here, we show that magnetorefractive effect provides a second-harmonic magnon signal whose amplitude is comparably strong with the linear component, making it an efficient probe for detecting the inherent nonlinear spin dynamics in orthoferrites.
Energy and charge transfer processes like Interatomic Coulombic Decay (ICD) play an important role in the relaxation of excited atoms or molecules in dense media such as biological tissue. Here, we present a method to experimentally determine the site-specific efficiency of the ICD process, which is in quantitative agreement with theoretical calculations.
It is established that topological spin textures are a rich source for emergent physical properties; it remains a major challenge, however, to unravel their local structure and topological connections. Here, the authors apply X-ray vector magnetic tomography to gain insight into the magnetic structure near Bloch points at permalloy microstructures and identify several topological monopoles and dipoles within the domain wall core.
For decades hole dynamics were thought to be invisible in the transient spectroscopy of quantum dots. Here, the authors use a combination of time and frequency resolution of 2D electronic spectroscopy to reveal previously unobserved hole dynamics and rationalize these dynamics from a conceptual transition from continuum to atomistic theories of quantum dot excitonics.
Borophene, a single layer of boron atoms, has many of the exotic properties of its better-known cousin graphene. Here, the authors use ab initio calculations to understand the atomic origin of the tilt in the two-dimensional Dirac cone of 8Pmmn borophene, thereby suggesting atomic substitutions to vary the tilt.