Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
A superlattice structure in Eu-doped GaN is known to improve the power output of red LEDs, though the mechanism behind this needs to be further established. Here, terahertz emission spectroscopy is used to understand the role played by potential barriers and carrier confinement in determining power output.
The layered charge density wave system 1T-TaS2 hosts a series of interesting correlation-induced electronic phases, but the nature of its insulating state is still under debate. Here, theoretical calculations and microscopy measurements reveal the role of stacking and interlayer coupling in the formation of different bandgap types, addressing previous discrepancies.
There is an ongoing need for new anticounterfeiting technologies. Here, the combined effects of capillary and Marangoni flow create randomly oriented MoSx clusters on a surface, which are used as anticounterfeiting tags.
Engineering the dynamics of excitons is a promising approach for advanced optoelectronic devices. Here, exciton formation dynamics at an Si/SiO2 interface are studied for different temperatures and injection levels by time-resolved terahertz spectroscopy.
As recently proposed, the kagome metal CsV3Sb5 could host spontaneous orbital-currents due to Chern Fermi pockets, but these are challenging to detect. Here, a large g-factor enhancement in magnetic breakdown orbits, determined via quantum oscillations, provides a visible manifestation of Berry-curvature-induced large orbital moments.
Hafnia ferroelectrics hold exciting technological potential, but the variety of phases and unconventional properties found in these materials make them extremely challenging to describe theoretically. Here, an approach based on an original reference phase provides a unifying picture to understand the multiple low-energy polymorphs of hafnia.
Stimuli-responsive elastic metamaterials enable a high degree of tunability of resonance-based features. Here, a magnetically programmable metamaterial based on magnetorheological elastomers is designed and fabricated, demonstrating robust local resonance bandgap control.
The nematic sol-gel transition microstructure of swelling clays is not well understood. Here, the microstructure of a smectite clay suspension is probed with ultra-small angle neutron/X-ray scattering, uncovering the structural order of these nematic gels.
Copper sulfidation in the rubber/brass interface of tires during aging is still not well understood. Here, the 3D spatial location and chemical states of copper species in a rubber/brass composite are visualized and tracked by 3D X-ray spectroimaging with data-driven machine learning analysis.
Quantification of large topological motifs is important for understanding chemical linkages between structural ordering and macroscopic behaviors. Here, two quantitative analysis methods based on rings are proposed to reveal information on orders and linkages in crystalline and amorphous materials.
The thermal and mechanical properties of inverse vulcanized polymers are currently underdeveloped. Here, a series of terpolymers copolymerized from two distinct organic comonomers and elemental sulfur yield polymers with a wide range of glass transition temperatures and show good mechanical properties.
Achieving close contact between organic and inorganic components in nanostructures is critical for performance. Here, the interfacial interaction in titanium oxide-based organic-inorganic nanoheterojunctions is promoted by host-guest interactions, which are obtained through chiral recognition.
Mechanical characterizations of metal-organic framework monoliths are often overlooked. Here, the stress-strain behaviour of ZIF-8 and MIL-68 monoliths was investigated with flat punch nanoindentation, micropillar compression and Raman microspectroscopy.
Cooling computer chips remains a key requirement for improving their performance. Here, a CMOS-compatible MOSFET is used to electrically, rather than physically, induce quantum confinement in a thermoelectric device, improving its thermoelectric performance and making it a viable microchip thermal management solution.
Platinum nanoparticles are promising candidates for enhancing radiotherapy sensitivity. Here, platinum-based nanomaterials with a multi-core structure show efficient near-infrared photothermal treatment on glioblastoma tumoroids with good biostability.
In-situ x-ray studies have proven to be vital in understanding solidification behavior during additive manufacturing of alloys. Here, operando synchrotron diffraction of a superalloy reveals the effects of solidification dynamics on dendrite deformation mechanisms during laser melting.
MnBi2-xSbxTe4 is a promising host for exotic quantum phenomena but its electronic properties crucially depend on intrinsic disorder, which is difficult to quantify. Here, the roles of nanoscale defects in MnBi2-xSbxTe4 are disentangled by statistical analysis using scanning tunnelling microscopy and spectroscopy.
The ability of a structure to reliably change its shape is key to the function of various organisms in nature, as well as for applications such as implants and robotics. Here, a methodology is shown to predict shape-morphing in kinematic structures, based on geometrical multibody design of connecting elements and joints.
LiCrSe2 is a recently synthesized two-dimensional triangular lattice antiferromagnet. Here, a comprehensive analysis of its magnetic phases and structural transitions is obtained by a combination of experimental probes, revealing a complex interplay of magnetic interactions, lattice distortions, and itinerant magnetic frustration.
High-throughput computational screening accelerates the search for promising metal-organic frameworks but often neglects stability. Here, four stability metrics are integrated with high-throughput computational screening to identify top-performing metal-organic frameworks for carbon dioxide capture.