Announcements

  • Microscopy image of coacervate microdroplets

    We are currently welcoming submissions to Guest Edited Collections on 'Organomediated polymerization', 'On-surface synthesis', 'Coacervation in systems chemistry' and 'Chemoenzymatic synthesis'.

  • Multicoloured image of head silhouettes

    Interested in joining our editorial board and helping to shape our journal and the manuscripts that we publish in your areas of research? Please fill in our Google form (link above) to indicate your interest. We are particularly interested in hearing from women and those with other underrepresented identities.

  • Left: Headshot of Maria Colín-García; Right: Reviewer of the month badge

    This month we thank María Colín-García for her invaluable contributions to peer review. Dr Colín-García's research interest focuses on prebiotic chemistry and the relevance of minerals in the associated processes.

  • Metrics image

    Communications Chemistry has a 2-year impact factor of 7.211 (2022), and mean decision times of 3 days to first editorial decision and 31 days to first post-review decision (2021).

Advertisement

  • Efforts are ongoing to address inequities in scientific fields. Here, the author provides a critical look at the practice and culture of science with calls to action to broaden participation and recognition of talented members from marginalized groups in the chemical sciences.

    • Hind A. Al-Abadleh
    CommentOpen Access
  • Economical and high-efficiency synthesis of single-atom catalysts is a tremendous challenge hampering their large-scale industrialization, which is mainly attributed to the complex equipment and processes necessary for both top-down and bottom-up synthesis methods. Now, a facile three-dimensional printing approach tackles this dilemma. From a solution of printing ink and metal precursors, target materials with specific geometric shapes are prepared with high output, directly and automatically.

    • Yuhua Liu
    • Wei Zhang
    Research HighlightOpen Access
  • Liquid-liquid phase separation (LLPS) underlies the formation of intracellular membraneless compartments in biology and may have played a role in the formation of protocells that concentrate key chemicals during the origins of life. While LLPS of simple systems, such as oil and water, is well understood, many aspects of LLPS in complex, out-of-equilibrium molecular systems remain elusive. Here, the author discusses open questions and recent insights related to the formation, function and fate of such condensates both in cell biology and protocell research.

    • Evan Spruijt
    CommentOpen Access
  • Combining the superior photovoltaic performance of three-dimensional perovskites and the intrinsic durability of two-dimensional perovskites, the construction of 3D/2D perovskite bilayer heterojunctions is a promising strategy to realize efficient and stable perovskite solar cells, but it is still a challenge to control the phase purity, film thickness, orientation, and crystal structure of 2D perovskites. Now, a solution-processing strategy has overcome this challenge by directly coating a tailored single-crystal 2D perovskite ink on as-prepared 3D perovskite films, resulting in effective, ultra-stable and phase-pure 3D/2D perovskite bilayer heterojunctions.

    • Xinxin Lian
    • Hong Zhang
    • Junhao Chu
    Research HighlightOpen Access
Questionmarks

Open Questions in Chemistry

In spite of decades of research and the enormous progress made, chemists continue to grapple with poorly understood aspects of the world around us. This collection aims to uncover open questions across the breadth of the chemical sciences. Each Comment provides an overview of a focused field of research, identifies key open questions, and gives expert opinion on how challenges in answering these questions might be overcome.
Collection

Advertisement

Nature Careers

Jobs

Advertisement