Focus |

Mechanobiology

Recent progress in the study of cellular mechanotransduction — the conversion of mechanical forces into biochemical signals — has increased our understanding of mechanobiology by providing novel insights into how mechanical inputs regulate cell behaviour and tissue homeostasis and how their deregulation might cause disease. This Focus issue includes Review articles and comments that discuss how mechanical forces are transduced into the cell, including into the nucleus, to control gene expression and to regulate morphogenesis, tissue regeneration and tumorigenesis. Also discussed is the therapeutic potential of modulating mechanotransduction with the use of synthetic matrices.

Reviews

Mechanical cues from the microenvironment can be efficiently transmitted to the nucleus to engage in the regulation of genome organization and gene expression. Recent technological and theoretical progress sheds new light on the relationships between cell mechanics, nuclear and chromosomal architecture and gene transcription.

Review Article | | Nature Reviews Molecular Cell Biology

Physical cues regulate stem cell fate and function during embryonic development and in adult tissues. The biophysical and biochemical properties of the stem cell microenvironment can be precisely manipulated using synthetic niches, which provide key insights into how mechanical stimuli regulate stem cell function and can be used to maintain and guide stem cells for regenerative therapies.

Review Article | | Nature Reviews Molecular Cell Biology

The transcription factors YAP and TAZ have recently emerged as being conserved transducers of mechanical signals into cells and mediators of processes such as proliferation, migration and cell fate decision. The roles of YAP-mediated and TAZ-mediated mechanotransduction have now been documented in many physiological and pathological contexts, providing novel insights into cellular mechano-responses and their consequences.

Review Article | | Nature Reviews Molecular Cell Biology

Coordinated movements of cell collectives are important for morphogenesis, tissue regeneration and cancer cell dissemination. Recent studies, mainly using novelin vitroapproaches, have provided new insights into the mechanisms governing this multicellular coordination, highlighting the key role of the mechanosensitivity of adherens junctions and mechanical cell–cell coupling in collective cell behaviours.

Review Article | | Nature Reviews Molecular Cell Biology

Soon after their discovery in 2010, Piezo channels became a paradigm for studying mechanosensitive ion channels. These channels respond to physiologically relevant forces in diverse cellular contexts, and their dysfunction has been linked to various diseases. We are now starting to understand gating mechanisms of Piezo channels and their key roles in physiology.

Review Article | | Nature Reviews Molecular Cell Biology

News & Comment

Applying force to the nucleus reduces the diffusion barrier at nuclear pores and promotes nuclear import of certain proteins, including the transcription regulator YAP, depending on their molecular properties.

Research Highlight | | Nature Reviews Molecular Cell Biology