Collection 

Complexity Research in Nature Communications

This web collection showcases the potential of interdisciplinary complexity research by bringing together a selection of recent Nature Communications articles investigating complex systems. Complexity research aims to characterize and understand the behaviour and nature of systems made up of many interacting elements. Such efforts often require interdisciplinary collaboration and expertise from diverse schools of thought. Nature Communications publishes papers across a broad range of topics that span the physical and life sciences, making the journal an ideal home for interdisciplinary studies.

The Ecology and evolution section contains studies that explore the dynamics of networks of genes, individuals and communities using combinations of empirical data and mathematical tools. Other examples of computational modeling in biology include studies on precision medicine and molecular network dynamics, and these are highlighted in Network medicine tab. Neuroscience is another discipline that is effectively leveraging network analysis to better understand how the complex interactions between neuroanatomy and function give rise to equally complex human behaviors. Such behaviors, when combined, give rise to cultures and societies.  The latter are paradigmatic complex systems, and articles presented in the Social systems section examine these paradigmatic complex systems, describing the dynamics of social systems, financial systems and transport networks that affect much of our daily lives.  Finally, the collection under the Network structure and dynamics tab showcases methodological advances in complex system modeling and network analysis. The articles that we felt represented each section particularly well are also available in the Editors' picks section, below.  

Solving some of the most important problems in science may only be possible when scientists with different backgrounds collaborate to address shared questions using complementary techniques. Truly interdisciplinary research that can bridge the natural, physical and social sciences remains challenging, as it requires scientists to share and discuss their views across disciplines, and therefore such research must also be able to reach a diverse audience. Our collection, which has been chosen by editors across the broad spectrum of subjects covered by Nature Communications, has been put together with this specific goal in mind.  

 

Editors' picks