Focus |

Inorganic and Physical Chemistry

Jacilynn Brant: materials chemistry and functional materials.

Long Chen: photo- and heterogeneous catalysis.

Margherita Citroni: physical and analytical chemistry.

Ariane Vartanian: nanoscale and supramolecular chemistry.

Welcome to the Nature Communications Editors’ Highlights webpage on inorganic, nanoscale and physical chemistry. Each month our editors select a small number of Articles recently published in Nature Communications that they believe are particularly interesting or important.

The aim is to provide a snapshot of some of the most exciting work published in the area of inorganic, nanoscale and physical chemistry at Nature Communications.

Make sure to check the Editors' Highlights page each month for new featured articles.

Vibrational energy transfer in water involves intermolecular coupling of O-H stretching modes, but much less is known about the role of the bending modes. Here the authors, combining static and femtosecond infrared, Raman, and hyper-Raman spectroscopy and ab initio molecular dynamics simulations, provide insight into the energy dynamics of the bend vibrations.

Article | Open Access | | Nature Communications

Solid hydrogen has increasingly hindered rotation under high pressure, but the effect on spin isomer populations had not been directly probed. Here the authors measure NMR spectra of solid hydrogen up to the megabar, and observe the crossover to a spin 1/2 dipolar system above 70 GPa where distinction between ortho and para spin isomers is lost.

Article | Open Access | | Nature Communications

The green component of the solar spectrum can efficiently drive natural photosynthesis, but the process has been little investigated due to the complexity of the excited states involved. Here the authors utilize polarization-dependent two-dimensional electronic-vibrational spectroscopy to define the origin and dynamics of these states in light-harvesting complex II.

Article | Open Access | | Nature Communications

Water’s hydrogen-bond network is truncated at hydrophobic interfaces and the dynamics of the resulting free OH groups is not well understood. The authors experimentally show that the main vibrational relaxation mechanism for free OH at the air-water interface is a diffusive molecular reorientation, rather than intramolecular energy transfer.

Article | Open Access | | Nature Communications

Electrification of water upon contact with hydrophobic surfaces is a ubiquitous but poorly understood phenomenon. Here, the authors pinpoint the factors responsible for the excess positive charge carried by water droplets dispensed from hydrophobic capillaries, thereby answering some outstanding questions and raising new ones.

Article | Open Access | | Nature Communications

Spectroscopic studies of water clusters provide insight into the hydrogen bond structure of water and ice. The authors measure infrared spectra of neutral water octamers using a threshold photoionization technique based on a tunable vacuum-UV free electron laser, identifying two cubic isomers in addition to those previously observed.

Article | Open Access | | Nature Communications

Hydrogen has multiple molecular phases which are challenging to explore computationally. The authors develop a machine-learning approach, learning from reference ab initio molecular dynamics simulations, to derive a transferable hierarchical force model that provides insight into high pressure phases and the melting line of H2.

Article | Open Access | | Nature Communications

Heterogenous ice nucleation is a ubiquitous phenomenon, but predicting the ice nucleation ability of a substrate is challenging. Here the authors develop a machine-learning data-driven approach to predict the ice nucleation ability of substrates, which is based on four descriptors related to physical properties of the interface.

Article | Open Access | | Nature Communications

Multivalent ligand-receptor interactions enhance binding selectivity in biological systems, and may be exploited to design synthetic systems. Here the authors demonstrate a multivalent behavior where the ability to bind the target occurs when the receptor density is within a specific range.

Article | Open Access | | Nature Communications

Eumelanin protects cells from sun damage and is promising for energy conversion applications, but its structure and excited state dynamics are elusive. Here the authors shed light on both aspects combining selective excitation of UV- and visible-absorbing chromophores with time-resolved infrared spectroscopy.

Article | Open Access | | Nature Communications