Collection |

Genome Editing

Recent advances in genome editing technologies have substantially improved our ability to make precise changes in the genomes of eukaryotic cells. Programmable nucleases, particularly the CRISPR/Cas system, are already revolutionizing our ability to interrogate the function of the genome and can potentially be used clinically to correct or introduce genetic mutations to treat diseases that are refractory to traditional therapies. This collection of articles from the Nature Research journals provides an overview of current progress in developing targeted genome editing technologies. A selection of protocols for using and adapting these tools in your own lab is also included.



Selectable markers are widely used in cell engineering but there is only a limited variety to choose from. Here the authors split markers using inteins, allowing up to six transgene integration events to be selected for with one marker.

Article | Open Access | | Nature Communications

One third of verified gene knock outs with CRISPR still show residual protein expression owing to translation reinitiation or exon skipping. Several proteins are still functional. The authors call for a systematic analysis of protein levels after genome editing.

Analysis | | Nature Methods

Previous gene editing in haematopoietic stem cells (HSCs) has focussed on a heterogeneous CD34+ population. Here, the authors demonstrate high efficiency CRISPR/Cas9-based editing of purified long-term HSCs using non-homologous end joining and homology-directed repair, by directing isoform-specific expression of GATA1.

Article | Open Access | | Nature Communications

CRISPR activation (CRISPRa) can target select genes and, rather than being used to delete them, can be used to activate their expression. Chen and colleagues use a CRISPRa-based approach to drive the expression of multiple endogenous genes in tumors and presentation of the antigens encoded, thus enhancing antitumor immune responses.

Article | | Nature Immunology

Dystrophin-deficient mice are used to test corrective strategies for Duchenne muscular dystrophy, but evaluation of dystrophin expression requires collection of tissue samples from specific muscles and time points. Here, the authors generate mice in which dystrophin expression is coupled to luciferase, and show that bioluminescence allows non-invasive monitoring of dystrophin expression following genome editing.

Article | Open Access | | Nature Communications

The role of CTCF-bound insulator elements in enhancer-gene interactions and transcriptional regulation remains poorly understood. Here, the authors investigate multiple epigenome editing strategies for perturbing individual CTCF-bound insulators, and evaluate their effects on genome topology and transcription.

Article | Open Access | | Nature Communications

Mucopolysaccharidosis type I (MPSI) is a lysosomal storage disease caused by insufficient iduronidase (IDUA) activity. Here, the authors use an ex vivo genome editing approach to overexpress IDUA in human hematopoietic stem and progenitor cells and show it can phenotypically correct MSPI in mouse model.

Article | Open Access | | Nature Communications

Single-particle tracking PALM (sptPALM) provides quantitative information in vivo if the protein of interest remains in a single diffusional state during track acquisition. Here the authors develop a custom-built sptPALM microscope and a Monte-Carlo based diffusion distribution analysis to study dynamic DNA-dCas9 interactions in live bacteria.

Article | Open Access | | Nature Communications

Cystic fibrosis is caused by mutations in the CFTR chloride channel. Here, the authors develop a gene therapy approach using the programmable nuclease AsCas12a to correct a splicing mutation in CFTR, and show efficient repair of the mutation and recovery of CFTR function in patient-derived organoids and airway epithelial cells.

Article | Open Access | | Nature Communications

AsCpf1 is an alternative nuclease to Cas9 for CRISPR mediated genome engineering. Here the authors demonstrate functional genomic screens with AsCpf1 that minimize library size with no loss in gene targeting efficiency.

Article | Open Access | | Nature Communications

Here, the authors show that sequential treatment with long-acting slow-effective release ART and AAV9- based delivery of CRISPR-Cas9 results in undetectable levels of virus and integrated DNA in a subset of humanized HIV-1 infected mice. This proof-of-concept study suggests that HIV-1 elimination is possible.

Article | Open Access | | Nature Communications


CRISPR–Cas systems have revolutionized genome editing, and the CRISPR–Cas toolkit has been expanding to include single-base editing enzymes, targeting RNA and fusing inactive Cas proteins to effectors that regulate various nuclear processes. Consequently, CRISPR–Cas systems are being tested for gene and cell therapies.

Review Article | | Nature Reviews Molecular Cell Biology

Genome editing through direct editing of bases holds promise for achieving precise genomic changes at single-nucleotide resolution while minimizing the occurrence of potentially mutagenic double-strand DNA breaks. In this Review, Rees and Liu provide a comprehensive account of the state of the art of base editing of DNA and RNA, including the progressive improvements to methodologies, understanding and avoiding unintended edits, cellular and organismal delivery of editing reagents and diverse applications in research and therapeutic settings.

Review Article | | Nature Reviews Genetics

News and views

The simultaneous removal of endogenous T-cell receptor α-chains and β-chains, and the orthotopic placement of an exogenous receptor in human T cells via CRISPR gene-editing, prevents the mispairing between endogenous and transgenic receptors while preserving the cells’ function.

News & Views | | Nature Biomedical Engineering

A new genome editing strategy called prime editing uses a catalytically impaired Cas9 fused to an engineered reverse transcriptase to write desired genetic sequence information directly into a target locus.

Research Highlight | | Nature Reviews Genetics