Focus |

Condensed-Matter Physics

Richard Brierley: correlated materials, many-body physics and solid state qubits.

Wei Fan: topological matter and superconductivity.

Yu Gong: magnetic materials and spintronics.

Silvia Milana: physics of two-dimensional materials and van der Waals heterostructures.

Welcome to the Nature Communications Editors’ Highlights webpage on condensed-matter physics. Each month our editors select a small number of Articles recently published in Nature Communications that they believe are particularly interesting or important.

The aim is to provide a snapshot of some of the most exciting work published in the area of condensed-matter physics at Nature Communications.

Make sure to check the Editors' Highlights page each month for new featured articles.

Richard Brierley

The boundaries of fractional quantum Hall states can host multiple, interacting one-dimensional edge modes, which test our understanding of strongly interacting systems. Here the authors observe the edge-mode equilibration transition that was predicted for the ν=2/3 fractional quantum Hall state.

Article | open | | Nature Communications

It is often stated that first principles studies of transition metal oxides require dynamically correlated methods to correctly produce gap formation, magnetism and structural distortions. Varignon et al. show instead that static correlations are sufficient to capture these features in the ABO3 oxide series.

Article | open | | Nature Communications

Controllable two-qubit interactions are necessary to build a functional quantum computer. Here the authors demonstrate fast, coherent swapping of two spin states mediated by a long, multi-electron quantum dot that could act as a tunable coupler mediating interactions between multiple qubits.

Article | open | | Nature Communications

Conventional crystal growth models assume crystals grow into a structure-less liquid, even though liquid metals have shown evidence of structural ordering. Here, the authors show crystal growth can be influenced by the presence of thermodynamically unstable local structural order in the liquid.

Article | open | | Nature Communications

The effects of dopants in high-temperature superconductors on the surrounding electronic structure give insights into their unconventional microscopic behaviour. Here the authors find a new class of defects that they identify as oxygen dopants whose ionization and local environment induce unusual atomic-scale charge dynamics.

Article | open | | Nature Communications

Topological phases of matter are determined by its symmetries and dimension. Here the authors show that in non-Hermitian systems, such as those with gain and loss, time-reversal and particle-hole symmetries are equivalent to each other, unifying otherwise distinct topological classes and leading to emergent non-Hermitian topological phases.

Article | open | | Nature Communications

Little is known about diffusion along metal/ceramic interfaces even though it controls the physical behavior and lifetimes of many devices (including batteries, microelectronics, and jet engines). Here, the authors show that diffusion along a nickel/sapphire interface is abnormally fast due to nickel vacancies and generalise their findings to a wide-range of metal/ceramic systems.

Article | open | | Nature Communications

Controlling ferroelectric polarization is conventionally achieved by applying electric fields, mechanical force or similar. Here reversible switching of the bulk polarization of a BiFeO3 thin film is demonstrated by pattering aqueous solution on to the surface enabling large-scale switching.

Article | open | | Nature Communications

Wei Fan

Spectroscopic signatures of magnetic response in topological materials remain very limited. Here, the authors observe a quasi-linear field dependent transverse magnetization and a non-saturating parallel magnetization in a Weyl semimetal TaAs under strong magnetic field, suggesting a signature of relativistic quasiparticles in topological materials.

Article | open | | Nature Communications

The optimal condition for superconductivity is a long-sought issue but remains challenging. Here, Ivashko et al. demonstrate that the compressive strain to La2CuO4 films enhances the Coulomb and magnetic-exchange interactions relevant for superconductivity, providing a strategy to optimise the parent Mott state for superconductivity.

Article | open | | Nature Communications

It remains challenging on how to selectively control terahertz conductivity at surface from the bulk contribution in topological insulators. Here, Luo et al. discover and manipulate topologically enhanced surface transport due to helical spin structure using mid-infrared and terahertz ultrafast photoexcitations.

Article | open | | Nature Communications

An anomalous phase shift in a topological insulator based Josephson junction is expected but never been observed. Here, Assouline et al. observe an anomalous phase shift in a Bi2Se3 based Josephson junction in presence of an in-plane magnetic field, opening opportunities for phase-controlled Josephson devices.

Article | open | | Nature Communications

Understanding the ground state (GS) phase transitions in the quantum tunneling regime of a superconducting system is important for future qubit devices. Here, Shen, Heedt and Borsoi et al. report distinct types of fermion parity GS transitions as a function of magnetic field and gate voltages in a Coulomb-blockaded InSb–Al island.

Article | open | | Nature Communications

Topological states may emerge in nonequilibrium but the mechanisms are much less understood. Here Topp et al. propose a nonequilibrium route to obtain the magnetic Weyl semimetallic phase in pyrochlore iridates by ultrafast modification of the effective electron-electron interactions with short laser pulses.

Article | open | | Nature Communications

Yu Gong

The magnonic currents promise the opportunity for the energy efficient information processing and communication technologies. Here the authors theoretically show the propagating spin waves that carry orbital angular momentum can be electrically tunable and protected against damping in a cylindrical magnetic insulator waveguide.

Article | open | | Nature Communications

Exploring lattice distortions from magnetic short-range ordering (SRO) facilitates the understanding of magnetic long-range ordering (LRO). Here the authors apply high-multipole nonlinear optical polarimetry to track SRO induced distortions in CrSiTe3, showing that LRO is established via a crossover from two- to three-dimensional SRO.

Article | open | | Nature Communications

2D chalcogenide semiconductors with luminescence and ferromagnetism (FM) are demanded in spintronics, valleytronic and photoelectric devices. Here the authors show such characteristics in monolayer MoS2 by co-doping Co and Cr to build the FM interaction and cut-off the nonradiative recombination channels of excitons

Article | open | | Nature Communications

Mutual control of the electric polarization and magnetization promises for low power consumption spintronic devices but remains challenging. Here the authors show reversal of non-volatile magnetization by electric field as well as the polarization switching by magnetic field in a single-component material, close to room temperature.

Article | open | | Nature Communications

Pursuing high Curie temperature magnetic insulators has been one of the extensively studied subjects due to their wide appeal for spintronic applications. Here the authors experimentally and theoretically demonstrate a record high Curie temperature over 1000 K in B-site ordered double-perovskite, Sr3OsO6.

Article | open | | Nature Communications

Electric field controlled magnetism provides an energy efficient way for the operations in the spintronic devices. Here the authors show strain induced, reversible, nonvolatile electric field control of magnetization and magnetoresistance in a magnetic tunnel junction on a ferroelectric substrate at room temperature and zero magnetic field.

Article | open | | Nature Communications

Imaging the antiferromagnetic (AFM) domains facilitates the understanding and design of AFM spintronics but is still challenging. Here the authors show an imaging approach for antiphase domains in AFM Fe2Mo3O8 by resonantly scattered coherent soft X-rays, which is also applicable to collinear antiferromagnets.

Article | open | | Nature Communications

Magnon-based spintronic devices crucially rely on the capability of spin wave manipulation. Here the authors achieve active control of spin wave transmission by programming a pinned 90 degree Néel domain wall in a continuous CoFeB/BaTiO3 film with abrupt rotations of uniaxial magnetic anisotropy.

Article | open | | Nature Communications

Controlling the Néel vector switching is crucial to the antiferromagnetic spintronics but so far limited to 90° reorientations. Here the authors report electrical Néel vector reversal and its detection in a fully compensated collinear antiferromagnet (AF) by exploiting the broken time reversal and spatial inversion symmetries of the AF.

Article | open | | Nature Communications

Silvia Milana

The emission of light from correlated excitonic complexes has been recently observed in atomically thin transition metal dichalcogenides. Here, the authors report electroluminescence generated by a pulsed gate voltage from excitons, trions, and biexcitons in monolayer WSe2 and WS2 encapsulated with hBN.

Article | open | | Nature Communications

Owing to the presence of strongly bound excitons and degenerate valleys, monolayer transition metal dichalcogenides show promise for valleytronic applications. Here, the authors embed monolayer WSe2 in a monolithic dielectric cavity, and observe room-temperature valley coherence of valley-polaritons.

Article | open | | Nature Communications

The potential of 2D materials for space applications has been surfaced recently, however a comprehensive assessment of their suitability is currently missing. Here, the authors investigate the radiation effects in Earth’s atmosphere on various devices based on 2D transition metal dichalcogenides and hexagonal boron nitride.

Article | open | | Nature Communications

Owing to the presence of a valley degree of freedom, atomically thin transition metal dichalcogenides show promise for room temperature valleytronic applications. Here, the authors use polarization-resolved Raman spectroscopy to gain insight to the exciton-phonon coupling in charge tunable single layer MoS2.

Article | open | | Nature Communications

The short exciton life time in atomically thin transition metal dichalcogenides poses limitations to efficient control of the valley pseudospin and coherence. Here, the authors manipulate the exciton coherence in a WSe2 monolayer embedded in an optical microcavity in the strong light-matter coupling regime.

Article | open | | Nature Communications

Quantitative analysis of the extinction spectra of dispersions of 2D materials is complicated by light scattering. Here, the authors investigate non-resonant scattering in suspensions of wide-bandgap nanosheets, and develop a general model which allows the scattering spectra to be used as metrics for particle size in nanosheet dispersions.

Article | open | | Nature Communications

Encapsulated graphene Josephson junctions are promising for microwave quantum circuits but so far haven’t been explored. Here, Schmidt and Jenkins et al. observe a gate-tunable Josephson inductance in a microwave circuit based on a ballistic graphene Josephson junction embedded in a superconducting cavity.

Article | open | | Nature Communications