Collection |

Forests in the Anthropocene

Forests are multifaceted ecosystems that perform an array of essential functions that both directly and indirectly impact humanity. They act as a nexus of the Earth system’s climate, hydrology and biogeochemical cycles. This function is all the more relevant in the Anthropocene, an epoch characterised by humanity’s impact on our planet, given the vast amounts of carbon locked up in tree biomass that help buffer against anthropogenic carbon emissions to the atmosphere. Forests are also hubs of biodiversity that provide essential resources and services to communities, but they are vulnerable to degradation and deforestation. The study of forests, which also includes their restoration, conservation and sustainable use, thus encompasses a broad suite of scientific disciplines, and research in this field is becoming increasingly interdisciplinary.

This collection has been curated by the Earth science and Ecology editorial teams at Nature Communications in the hope that it will provide a helpful resource for researchers and decision makers in this increasingly interdisciplinary field. The collection is divided into four themes: climate-forest feedbacks, the forest-human interface, the forest carbon sink, and communities and ecosystems. This collection will be updated with new research and opinion pieces on a regular basis.

The editorial accompanying this collection discusses our evolving history with forests and how science can guide us towards living sustainably with these key ecosystems. 

Rainforest conversion to plantations driven by global demand for agricultural products generates high environmental costs. Here, the authors show that the high oil palm plantation production efficiency is associated with decreased carbon storage and slower organic matter cycling that affect ecosystem services.

Article | open | | Nature Communications

Expansion of rubber plantations threatens tropical forest carbon stocks and biodiversity, but may be dis-incentivised using carbon finance. Here, Warren-Thomas et al. use forest and agricultural data for Cambodia to show that carbon prices of $30–$51 per tCO2 are needed to match forest protection costs.

Article | open | | Nature Communications

Afforestation is often used to increase terrestrial carbon sequestration and restore ecosystem services. Here, the authors show that afforestation can also neutralize soil pH by lowering pH in alkaline soil but raising pH in acid soil, thus further promoting the restoration of ecosystem functions.

Article | open | | Nature Communications

The expansion of agriculture and rangelands can cause ecological spillover effects across cultivated-natural ecosystem boundaries. Here, Luskin et al. show irruptions of oil palm-subsidized wild boar alter the abundance and diversity of understory trees >1 km into a primary forest reserve in Malaysia.

Article | open | | Nature Communications

Land use and land cover change has led to more frequent hot, dry summers in parts of the mid-latitudes. Here the authors use an Earth system model to show that regions converted to crops and pastures experience hot, dry summers 2 to 4 times more frequently than they would if native forests had remained.

Article | open | | Nature Communications

Industrial mining contributes to deforestation in the Amazon, and the extent of effect could occur beyond areas of land explicitly permitted for mining. Here, Sonter et al. show that deforestation in 70-km buffer zones around mines has led to an estimated 9% of Brazilian Amazon deforestation since 2005.

Article | open | | Nature Communications

China’s Grain for Green Program is the world’s largest reforestation program, encompassing tens of millions of hectares since 1999. Here, Hua et al. show that the majority of areas have been reforested with tree monocultures, but that planting mixed forests could increase animal biodiversity without imposing additional economic costs.

Article | open | | Nature Communications