Collection |

Forests in the Anthropocene

Forests are multifaceted ecosystems that perform an array of essential functions that both directly and indirectly impact humanity. They act as a nexus of the Earth system’s climate, hydrology and biogeochemical cycles. This function is all the more relevant in the Anthropocene, an epoch characterised by humanity’s impact on our planet, given the vast amounts of carbon locked up in tree biomass that help buffer against anthropogenic carbon emissions to the atmosphere. Forests are also hubs of biodiversity that provide essential resources and services to communities, but they are vulnerable to degradation and deforestation. The study of forests, which also includes their restoration, conservation and sustainable use, thus encompasses a broad suite of scientific disciplines, and research in this field is becoming increasingly interdisciplinary.

This collection has been curated by the Earth science and Ecology editorial teams at Nature Communications in the hope that it will provide a helpful resource for researchers and decision makers in this increasingly interdisciplinary field. The collection is divided into four themes: climate-forest feedbacks, the forest-human interface, the forest carbon sink, and communities and ecosystems. This collection will be updated with new research and opinion pieces on a regular basis.

The editorial accompanying this collection discusses our evolving history with forests and how science can guide us towards living sustainably with these key ecosystems. 

As remote sensing technology improves, it is now possible to map fine-scale variation in plant functional traits. Schneider et al. remotely sense tree functional diversity, validate with field data, and reveal patterns of plant adaptation to the environment previously not retrievable from plot data

Article | open | | Nature Communications

Earth system model simulations of future climate in the Amazon show little agreement. Here, the authors show that biases in internally generated climate explain most of this uncertainty and that the balance between water-saturated and water-limited evapotranspiration controls the Amazon resilience to climate change.

Article | open | | Nature Communications

Deforestation and edge effects around cleared areas impact forest stability. Here, the authors examine human impacts on Amazonian forest-savanna bistability and show that tree cover bimodality is enhanced in regions close to human activities and is nearly absent in regions unaffected by human activities.

Article | open | | Nature Communications

Dust is an important nutrient source to landscapes, but often the source of dust is poorly constrained. Here, the authors quantify the origin of different dust sources in the Sierra Nevada by analysing dust composition and suggest exogenic dust may drive nutrient budgets in montane ecosystems.

Article | open | | Nature Communications