Collection |

Plasma Physics

Plasma exists in a mixed form of electrons, positive ions and neutral atoms or molecules and plays an important role in many processes; from astrophysical solar flares to nuclear fusion devices for energy applications. There is a strong research interest both in theory and experiment to understand how the plasma energy is transferred into other forms and how plasma behaves in different environments. Investigating these processes under extreme conditions in a table-top setting has become feasible due to the availability of high-power lasers.

In this collection we highlight a selection of recent experimental and theoretical research papers published on this multidisciplinary topic in Nature Communications. These articles feature research on fundamental plasma processes that are relevant to astrophysical events, energy transfer from laser to the particles during their acceleration, material development for plasma confinement and nuclear reactions in plasma fusion devices. This collection showcases the variety of research that different communities can bring together to better understand the ubiquitous processes in plasma.

Fundamental properties of plasma

  • Nature Communications | Article | open

    Different energy transport mechanisms come into play when intense laser pulses interact with dense plasma. Here the authors provide a limit on the plasma density reachable with an intense laser and an insight into the hole boring process.

    • Natsumi Iwata
    • , Sadaoki Kojima
    • , Yasuhiko Sentoku
    • , Masayasu Hata
    •  &  Kunioki Mima
  • Nature Communications | Article | open

    High intensity light with a non-zero orbital angular momentum could aid the development of laser-wakefield particle accelerators. Here, the authors theoretically show that stimulated Raman backscattering in plasmas can generate and amplify orbital angular momentum lasers to petawatt intensities.

    • J. Vieira
    • , R. M. G. M. Trines
    • , E. P. Alves
    • , R. A. Fonseca
    • , J. T. Mendonça
    • , R. Bingham
    • , P. Norreys
    •  &  L. O. Silva
  • Nature Communications | Article

    The electrons in a plasma can further ionize the ions when the two collide. Vinko et al. now study this ultrafast process in an unconventional plasma with a density similar to that of a solid, and show that the rate is several times higher than that predicted by standard theoretical models.

    • S. M. Vinko
    • , O. Ciricosta
    • , T. R. Preston
    • , D. S. Rackstraw
    • , C.R.D. Brown
    • , T. Burian
    • , J. Chalupský
    • , B. I. Cho
    • , H.-K. Chung
    • , K. Engelhorn
    • , R. W. Falcone
    • , R. Fiokovinini
    • , V. Hájková
    • , P. A. Heimann
    • , L. Juha
    • , H. J. Lee
    • , R. W. Lee
    • , M. Messerschmidt
    • , B. Nagler
    • , W. Schlotter
    • , J. J. Turner
    • , L. Vysin
    • , U. Zastrau
    •  &  J. S. Wark
  • Nature Communications | Article | open

    Charge screening dominates the behaviour of high-energy plasmas, which exist in stars and possibly in future fusion technology. Here, the authors describe a theoretical framework for charge screening that goes beyond the conventional model and demonstrate its importance in analysing experimental data.

    • D. A. Chapman
    • , J. Vorberger
    • , L. B. Fletcher
    • , R. A. Baggott
    • , L. Divol
    • , T. Döppner
    • , R. W. Falcone
    • , S. H. Glenzer
    • , G. Gregori
    • , T. M. Guymer
    • , A. L. Kritcher
    • , O. L. Landen
    • , T. Ma
    • , A. E. Pak
    •  &  D. O. Gericke
  • Nature Communications | Article | open

    Short pulses of high intensity laser light usually heat the ions in dense plasmas indirectly via collisions with the electrons. Here, the authors identify an extremely rapid alternative heating mechanism based on ion-ion collisions.

    • A. E. Turrell
    • , M. Sherlock
    •  &  S. J. Rose
  • Nature Communications | Article | open

    The energy loss of ions in plasma is a challenging issue in inertial confinement fusion and many theoretical models exist on ion-stopping power. Here, the authors use laser-generated plasma probed by accelerator-produced ions in experiments to discriminate various ion stopping models near the Bragg peak.

    • W. Cayzac
    • , A. Frank
    • , A. Ortner
    • , V. Bagnoud
    • , M. M. Basko
    • , S. Bedacht
    • , C. Bläser
    • , A. Blažević
    • , S. Busold
    • , O. Deppert
    • , J. Ding
    • , M. Ehret
    • , P. Fiala
    • , S. Frydrych
    • , D. O. Gericke
    • , L. Hallo
    • , J. Helfrich
    • , D. Jahn
    • , E. Kjartansson
    • , A. Knetsch
    • , D. Kraus
    • , G. Malka
    • , N. W. Neumann
    • , K. Pépitone
    • , D. Pepler
    • , S. Sander
    • , G. Schaumann
    • , T. Schlegel
    • , N. Schroeter
    • , D. Schumacher
    • , M. Seibert
    • , An. Tauschwitz
    • , J. Vorberger
    • , F. Wagner
    • , S. Weih
    • , Y. Zobus
    •  &  M. Roth

Particle accelerators

  • Nature Communications | Article | open

    Laser-driven plasmas can accelerate electrons in set-ups far smaller than conventional particle accelerators, but beam divergence is a problem. Here, the authors demonstrate a laser-plasma lens that can focus the beam thanks to field gradients five order of magnitude larger than using traditional optics.

    • C. Thaury
    • , E. Guillaume
    • , A. Döpp
    • , R. Lehe
    • , A. Lifschitz
    • , K. Ta Phuoc
    • , J. Gautier
    • , J-P Goddet
    • , A. Tafzi
    • , A. Flacco
    • , F. Tissandier
    • , S. Sebban
    • , A. Rousse
    •  &  V. Malka
  • Nature Communications | Article

    Intense laser pulses can induce the propagation of coherent waves through a plasma, which are useful for accelerating electrons. Here, the authors use a genetic algorithm and a deformable mirror to optimize the wavefront and improve electron beam intensity and divergence.

    • Z.-H. He
    • , B. Hou
    • , V. Lebailly
    • , J.A. Nees
    • , K. Krushelnick
    •  &  A.G.R. Thomas
  • Nature Communications | Article | open

    Higher beam quality and stability are desired in laser-plasma accelerators for their applications in compact light sources. Here the authors demonstrate in laser plasma wakefield electron acceleration that the beam loading effect can be employed to improve beam quality by controlling the beam charge.

    • J. P. Couperus
    • , R. Pausch
    • , A. Köhler
    • , O. Zarini
    • , J. M. Krämer
    • , M. Garten
    • , A. Huebl
    • , R. Gebhardt
    • , U. Helbig
    • , S. Bock
    • , K. Zeil
    • , A. Debus
    • , M. Bussmann
    • , U. Schramm
    •  &  A. Irman
  • Nature Communications | Article | open

    Extraction of ultra-low emittance bunches is an issue to be addressed for future applications of plasma wakefield accelerators. Here, the authors show that the field structure of the plasma could be suitable for this, by measuring the field's longitudinal variation produced by a relativistic electron bunch.

    • C. E. Clayton
    • , E. Adli
    • , J. Allen
    • , W. An
    • , C. I. Clarke
    • , S. Corde
    • , J. Frederico
    • , S. Gessner
    • , S. Z. Green
    • , M. J. Hogan
    • , C. Joshi
    • , M. Litos
    • , W. Lu
    • , K. A. Marsh
    • , W. B. Mori
    • , N. Vafaei-Najafabadi
    • , X. Xu
    •  &  V. Yakimenko
  • Nature Communications | Article | open

    Controlling and improving electron beam parameters are crucial for their application in free electron laser and X-ray sources. Here the authors generate quality electron beams with reduced energy spread from plasma accelerators by using a tailored escort electron bunch with the main accelerating bunch.

    • G. G. Manahan
    • , A. F. Habib
    • , P. Scherkl
    • , P. Delinikolas
    • , A. Beaton
    • , A. Knetsch
    • , O. Karger
    • , G. Wittig
    • , T. Heinemann
    • , Z. M. Sheng
    • , J. R. Cary
    • , D. L. Bruhwiler
    • , J. B. Rosenzweig
    •  &  B. Hidding
  • Nature Communications | Article | open

    Electron–positron pair plasma—a state of matter with a complete symmetry between negatively and positively charged particles—are found in many astrophysical object. Here, the authors use high-power laser to create an ion-free electron–positron plasma in the laboratory.

    • G. Sarri
    • , K. Poder
    • , J. M. Cole
    • , W. Schumaker
    • , A. Di Piazza
    • , B. Reville
    • , T. Dzelzainis
    • , D. Doria
    • , L. A. Gizzi
    • , G. Grittani
    • , S. Kar
    • , C. H. Keitel
    • , K. Krushelnick
    • , S. Kuschel
    • , S. P. D. Mangles
    • , Z. Najmudin
    • , N. Shukla
    • , L. O. Silva
    • , D. Symes
    • , A. G. R. Thomas
    • , M. Vargas
    • , J. Vieira
    •  &  M. Zepf

Fusion devices

  • Nature Communications | Article | open

    Magnetic fusion reactors with higher ratio of plasma kinetic pressure to magnetic pressure are economically desirable. The authors demonstrate a path to such a reactor in a field reversed configuration that can attain microstability and reduced particle and thermal fluxes by manipulating the shear flow.

    • L. Schmitz
    • , D. P. Fulton
    • , E. Ruskov
    • , C. Lau
    • , B. H. Deng
    • , T. Tajima
    • , M. W. Binderbauer
    • , I. Holod
    • , Z. Lin
    • , H. Gota
    • , M. Tuszewski
    • , S. A. Dettrick
    •  &  L. C. Steinhauer
  • Nature Communications | Article | open

    Vapour shielding is one of the interesting mechanisms for reducing the heat load to plasma facing components in fusion reactors. Here the authors report on the observation of a dynamic equilibrium between the plasma and the divertor liquid Sn surface leading to an overall stable surface temperature.

    • G. G. van Eden
    • , V. Kvon
    • , M. C. M. van de Sanden
    •  &  T. W. Morgan
  • Nature Communications | Article

    A stable plasma state with a high ratio of plasma to magnetic pressures is likely to be a key requirement for any future magnetic fusion reactor. Here, the authors create such a plasma using a field reversed configuration and active plasma boundary control and demonstrate its stability.

    • H. Y. Guo
    • , M. W. Binderbauer
    • , T. Tajima
    • , R. D. Milroy
    • , L. C. Steinhauer
    • , X. Yang
    • , E. G. Garate
    • , H. Gota
    • , S. Korepanov
    • , A. Necas
    • , T. Roche
    • , A. Smirnov
    •  &  E. Trask
  • Nature Communications | Article | open

    Early stellarator designs suffered from high particle losses, an issue that can be addressed by optimization of the coils. Here the authors measure the magnetic field lines in the Wendelstein 7-X stellarator, confirming that the complicated design of the superconducting coils has been realized successfully.

    • T. Sunn Pedersen
    • , M. Otte
    • , S. Lazerson
    • , P. Helander
    • , S. Bozhenkov
    • , C. Biedermann
    • , T. Klinger
    • , R. C. Wolf
    • , H. -S. Bosch
    • , The Wendelstein 7-X Team
    • , Ivana Abramovic
    • , Simppa Äkäslompolo
    • , Pavel Aleynikov
    • , Ksenia Aleynikova
    • , Adnan Ali
    • , Arturo Alonso
    • , Gabor Anda
    • , Tamara Andreeva
    • , Enrique Ascasibar
    • , Jürgen Baldzuhn
    • , Martin Banduch
    • , Tullio Barbui
    • , Craig Beidler
    • , Andree Benndorf
    • , Marc Beurskens
    • , Wolfgang Biel
    • , Dietrich Birus
    • , Boyd Blackwell
    • , Emilio Blanco
    • , Marko Blatzheim
    • , Torsten Bluhm
    • , Daniel Böckenhoff
    • , Peter Bolgert
    • , Matthias Borchardt
    • , Lukas-Georg Böttger
    • , Rudolf Brakel
    • , Christian Brandt
    • , Torsten Bräuer
    • , Harald Braune
    • , Rainer Burhenn
    • , Birger Buttenschön
    • , Victor Bykov
    • , Ivan Calvo
    • , Alvaro Cappa
    • , Andre Carls
    • , Bernardo Brotas de Carvalho
    • , Francisco Castejon
    • , Mark Cianciosa
    • , Michael Cole
    • , Stefan Costea
    • , Gabor Cseh
    • , Agata Czarnecka
    • , Andrea Da Molin
    • , Eduardo de la Cal
    • , Angel de la Pena
    • , Sven Degenkolbe
    • , Chandra Prakash Dhard
    • , Andreas Dinklage
    • , Marion Dostal
    • , Michael Drevlak
    • , Peter Drewelow
    • , Philipp Drews
    • , Andrzej Dudek
    • , Frederic Durodie
    • , Anna Dzikowicka
    • , Paul van Eeten
    • , Florian Effenberg
    • , Michael Endler
    • , Volker Erckmann
    • , Teresa Estrada
    • , Nils Fahrenkamp
    • , Joris Fellinger
    • , Yühe Feng
    • , Waldemar Figacz
    • , Oliver Ford
    • , Tomasz Fornal
    • , Heinke Frerichs
    • , Golo Fuchert
    • , Manuel Garcia-Munoz
    • , Benedikt Geiger
    • , Joachim Geiger
    • , Niels Gierse
    • , Alena Gogoleva
    • , Bruno Goncalves
    • , Dorothea Gradic
    • , Michael Grahl
    • , Silvia Groß
    • , Heinz Grote
    • , Olaf Grulke
    • , Carlos Guerard
    • , Matthias Haas
    • , Jeffrey Harris
    • , Hans- Jürgen Hartfuß
    • , Dirk Hartmann
    • , Dag Hathiramani
    • , Bernd Hein
    • , Stefan Heinrich
    • , Sophia Henneberg
    • , Christine Hennig
    • , Julio Hernandez
    • , Carlos Hidalgo
    • , Ulises Hidalgo
    • , Matthias Hirsch
    • , Udo Höfel
    • , Hauke Hölbe
    • , Alf Hölting
    • , Michael Houry
    • , Valentina Huber
    • , Codrina Ionita
    • , Ben Israeli
    • , Slowomir Jablonski
    • , Marcin Jakubowski
    • , Anton Jansen van Vuuren
    • , Hartmut Jenzsch
    • , Jacek Kaczmarczyk
    • , Johann-Peter Kallmeyer
    • , Ute Kamionka
    • , Hiroshi Kasahara
    • , Naoki Kenmochi
    • , Winfried Kernbichler
    • , Carsten Killer
    • , David Kinna
    • , Ralf Kleiber
    • , Jens Knauer
    • , Florian Köchl
    • , Gabor Kocsis
    • , Yaroslav Kolesnichenko
    • , Axel Könies
    • , Ralf König
    • , Petra Kornejew
    • , Felix Köster
    • , Andreas Krämer-Flecken
    • , Rüdiger Krampitz
    • , Natalia Krawzyk
    • , Thierry Kremeyer
    • , Maciej Krychowiak
    • , Ireneusz Ksiazek
    • , Monika Kubkowska
    • , Georg Kühner
    • , Taina Kurki-Suonio
    • , Peter Kurz
    • , Katja Küttler
    • , Sehyun Kwak
    • , Matt Landreman
    • , Andreas Langenberg
    • , Fernando Lapayese
    • , Heike Laqua
    • , Heinrich-Peter Laqua
    • , Ralph Laube
    • , Michael Laux
    • , Holger Lentz
    • , Marc Lewerentz
    • , Yunfeng Liang
    • , Shaocheng Liu
    • , Jim-Felix Lobsien
    • , Joaquim Loizu Cisquella
    • , Daniel Lopez-Bruna
    • , Jeremy Lore
    • , Axel Lorenz
    • , Vadym Lutsenko
    • , Henning Maaßerg
    • , Jeanette Maisano-Brown
    • , Oleksandr Marchuk
    • , Lionello Marrelli
    • , Stefan Marsen
    • , Nikolai Marushchenko
    • , Suguru Masuzaki
    • , Kieran McCarthy
    • , Paul McNeely
    • , Francisco Medina
    • , Dusan Milojevic
    • , Alexey Mishchenko
    • , Bernd Missal
    • , Joseph Mittelstaedt
    • , Albert Mollen
    • , Victor Moncada
    • , Thomas Mönnich
    • , Dmitry Moseev
    • , Michael Nagel
    • , Dirk Naujoks
    • , George Hutch Neilson
    • , Olaf Neubauer
    • , Ulrich Neuner
    • , Tran-Thanh Ngo
    • , Holger Niemann
    • , Carolin Nührenberg
    • , Jürgen Nührenberg
    • , Marian Ochando
    • , Kunihiro Ogawa
    • , Jef Ongena
    • , Hans Oosterbeek
    • , Novimir Pablant
    • , Danilo Pacella
    • , Luis Pacios
    • , Nerea Panadero
    • , Ekkehard Pasch
    • , Ignacio Pastor
    • , Andrea Pavone
    • , Ewa Pawelec
    • , Angeles Pedrosa
    • , Valeria Perseo
    • , Byron Peterson
    • , Dirk Pilopp
    • , Fabio Pisano
    • , Maria Ester Puiatti
    • , Gabriel Plunk
    • , Melanie Preynas
    • , Josefine Proll
    • , Aleix Puig Sitjes
    • , Frank Purps
    • , Michael Rack
    • , Kian Rahbarnia
    • , Jörg Riemann
    • , Konrad Riße
    • , Peter Rong
    • , Joachim Rosenberger
    • , Lukas Rudischhauser
    • , Kerstin Rummel
    • , Thomas Rummel
    • , Alexey Runov
    • , Norbert Rust
    • , Leszek Ryc
    • , Haruhiko Saitoh
    • , Shinsuke Satake
    • , Jörg Schacht
    • , Oliver Schmitz
    • , Stefan Schmuck
    • , Bernd Schneider
    • , Matthias Schneider
    • , Wolfgang Schneider
    • , Roman Schrittwieser
    • , Michael Schröder
    • , Timo Schröder
    • , Ralf Schröder
    • , Hans Werner Schumacher
    • , Bernd Schweer
    • , Ryosuke Seki
    • , Priyanjana Sinha
    • , Seppo Sipilae
    • , Christoph Slaby
    • , Håkan Smith
    • , Jorge Sousa
    • , Anett Spring
    • , Brian Standley
    • , Torsten Stange
    • , Adrian von Stechow
    • , Laurie Stephey
    • , Matthew Stoneking
    • , Uwe Stridde
    • , Yasuhiro Suzuki
    • , Jakob Svensson
    • , Tamas Szabolics
    • , Tamas Szepesi
    • , Henning Thomsen
    • , Jean-Marcel Travere
    • , Peter Traverso
    • , Humberto Trimino Mora
    • , Hayato Tsuchiya
    • , Tohru Tsuijmura
    • , Yuriy Turkin
    • , Swetlana Valet
    • , Boudewijn van Milligen
    • , Luis Vela
    • , Jose-Luis Velasco
    • , Maarten Vergote
    • , Michel Vervier
    • , Holger Viebke
    • , Reinhard Vilbrandt
    • , Christian Perez von Thun
    • , Friedrich Wagner
    • , Erhui Wang
    • , Nengchao Wang
    • , Felix Warmer
    • , Tom Wauters
    • , Lutz Wegener
    • , Thomas Wegner
    • , Gavin Weir
    • , Jörg Wendorf
    • , Uwe Wenzel
    • , Andreas Werner
    • , Yanling Wie
    • , Burkhard Wiegel
    • , Fabian Wilde
    • , Thomas Windisch
    • , Mario Winkler
    • , Victoria Winters
    • , Adelle Wright
    • , Glen Wurden
    • , Pavlos Xanthopoulos
    • , Ichihiro Yamada
    • , Ryo Yasuhara
    • , Masayuki Yokoyama
    • , Daihong Zhang
    • , Manfred Zilker
    • , Andreas Zimbal
    • , Alessandro Zocco
    •  &  Sandor Zoletnik
  • Nature Communications | Article | open

    It is important to understand the fast plasma dynamics in the operation of fusion plasma devices. Here the authors demonstrate the inference on the internal field reversed configuration magnetic topology and their occurrence during fast Alfvenic transient phenomena in C-2U device.

    • J. A. Romero
    • , S. A. Dettrick
    • , E. Granstedt
    • , T. Roche
    •  &  Y. Mok
  • Nature Communications | Article | open

    Understanding the transport of ions, electrons and heat in magnetized plasmas is important to the development of fusion power as well as our understanding of the behaviour of astrophysical objects. Ida et al. find that stochastization of magnetic field lines in a plasma damps plasma flow more strongly than expected.

    • K. Ida
    • , M. Yoshinuma
    • , H. Tsuchiya
    • , T. Kobayashi
    • , C. Suzuki
    • , M. Yokoyama
    • , A. Shimizu
    • , K. Nagaoka
    • , S. Inagaki
    • , K. Itoh
    • , the LHD Experiment Group
    • , T. Akiyama
    • , M. Emoto
    • , T. Evans
    • , A. Dinklage
    • , X. Du
    • , K. Fujii
    • , M. Goto
    • , T. Goto
    • , M. Hasuo
    • , C. Hidalgo
    • , K. Ichiguchi
    • , A. Ishizawa
    • , M. Jakubowski
    • , K. Kamiya
    • , H. Kasahara
    • , G. Kawamura
    • , D. Kato
    • , M. Kobayashi
    • , S. Morita
    • , K. Mukai
    • , I. Murakami
    • , S. Murakami
    • , Y. Narushima
    • , M. Nunami
    • , S. Ohdach
    • , N. Ohno
    • , M. Osakabe
    • , N. Pablant
    • , S. Sakakibara
    • , T. Seki
    • , T. Shimozuma
    • , M. Shoji
    • , S. Sudo
    • , K. Tanaka
    • , T. Tokuzawa
    • , Y. Todo
    • , H. Wang
    • , H. Yamada
    • , Y. Takeiri
    • , T. Mutoh
    • , S. Imagawa
    • , T. Mito
    • , Y. Nagayama
    • , K. Y. Watanabe
    • , N. Ashikawa
    • , H. Chikaraishi
    • , A. Ejiri
    • , M. Furukawa
    • , T. Fujita
    • , S. Hamaguchi
    • , H. Igami
    • , M. Isobe
    • , S. Masuzaki
    • , T. Morisaki
    • , G. Motojima
    • , K. Nagasaki
    • , H. Nakano
    • , Y. Oya
    • , Y. Suzuki
    • , R. Sakamoto
    • , M. Sakamoto
    • , A. Sanpei
    • , H. Takahashi
    • , M. Tokitani
    • , Y. Ueda
    • , Y. Yoshimura
    • , S. Yamamoto
    • , K. Nishimura
    • , H. Sugama
    • , T. Yamamoto
    • , H. Idei
    • , A. Isayama
    • , S. Kitajima
    • , S. Masamune
    • , K. Shinohara
    • , P. S. Bawankar
    • , E. Bernard
    • , M. von Berkel
    • , H. Funaba
    • , X. L. Huang
    • , T. Ii
    • , T. Ido
    • , K. Ikeda
    • , S. Kamio
    • , R. Kumazawa
    • , C. Moon
    • , S. Muto
    • , J. Miyazawa
    • , T. Ming
    • , Y. Nakamura
    • , S. Nishimura
    • , K. Ogawa
    • , T. Ozaki
    • , T. Oishi
    • , M. Ohno
    • , S. Pandya
    • , R. Seki
    • , R. Sano
    • , K. Saito
    • , H. Sakaue
    • , Y. Takemura
    • , K. Tsumori
    • , N. Tamura
    • , H. Tanaka
    • , K. Toi
    • , B. Wieland
    • , I. Yamada
    • , R. Yasuhara
    • , H. Zhang
    • , O. Kaneko
    •  &  A. Komori

Laboratory & astrophysical plasma

  • Nature Communications | Article | open

    Brown dwarfs are small stars that are believed to be made of a warm dense plasma that cannot support hydrogen fusion as larger stars do. Here, the authors present a method for studying the properties, such as resistivity, of warm dense plasmas in the laboratory.

    • N. Booth
    • , A. P. L. Robinson
    • , P. Hakel
    • , R. J. Clarke
    • , R. J. Dance
    • , D. Doria
    • , L. A. Gizzi
    • , G. Gregori
    • , P. Koester
    • , L. Labate
    • , T. Levato
    • , B. Li
    • , M. Makita
    • , R. C. Mancini
    • , J. Pasley
    • , P. P. Rajeev
    • , D. Riley
    • , E. Wagenaars
    • , J. N. Waugh
    •  &  N. C. Woolsey
  • Nature Communications | Article

    Magnetic reconnection occurs close to the surface of the sun, in the Earth’s magnetosphere and in astronomical plasmas. Here, the authors investigate magnetic reconnection in a laboratory-based experiments with an asymmetric configuration similar to those found in real astrophysical situations.

    • M.J. Rosenberg
    • , C.K. Li
    • , W. Fox
    • , I. Igumenshchev
    • , F.H. Séguin
    • , R.P.J. Town
    • , J.A. Frenje
    • , C. Stoeckl
    • , V. Glebov
    •  &  R.D. Petrasso
  • Nature Communications | Article | open

    Understanding the role of magnetic turbulence in the atmosphere is difficult as direct access is limited, but latest laser technology can enable such studies in the lab. Here the authors probe the evolution of such turbulence in laser-generated plasma with its implications to astrophysical environments.

    • Gourab Chatterjee
    • , Kevin M. Schoeffler
    • , Prashant Kumar Singh
    • , Amitava Adak
    • , Amit D. Lad
    • , Sudip Sengupta
    • , Predhiman Kaw
    • , Luis O. Silva
    • , Amita Das
    •  &  G. Ravindra Kumar
  • Nature Communications | Article | open

    Exploring astrophysical turbulent effects in laboratory plasma is challenging due to high threshold values of relevant parameters, such as the magnetic Reynolds number. Here the authors demonstrate the turbulent dynamo effect at large magnetic Reynolds numbers in laser-generated magnetized plasma.

    • P. Tzeferacos
    • , A. Rigby
    • , A. F. A. Bott
    • , A. R. Bell
    • , R. Bingham
    • , A. Casner
    • , F. Cattaneo
    • , E. M. Churazov
    • , J. Emig
    • , F. Fiuza
    • , C. B. Forest
    • , J. Foster
    • , C. Graziani
    • , J. Katz
    • , M. Koenig
    • , C.-K. Li
    • , J. Meinecke
    • , R. Petrasso
    • , H.-S. Park
    • , B. A. Remington
    • , J. S. Ross
    • , D. Ryu
    • , D. Ryutov
    • , T. G. White
    • , B. Reville
    • , F. Miniati
    • , A. A. Schekochihin
    • , D. Q. Lamb
    • , D. H. Froula
    •  &  G. Gregori
  • Nature Communications | Article | open

    Stationary radiative shocks are expected to form above the surface of highly-magnetized white dwarves in binary systems, but this cannot be resolved by telescopes. Here, the authors report a laboratory experiment showing the evolution of a reverse shock when both ionization and radiative losses are important.

    • J. E. Cross
    • , G. Gregori
    • , J. M. Foster
    • , P. Graham
    • , J. -M. Bonnet-Bidaud
    • , C. Busschaert
    • , N. Charpentier
    • , C. N. Danson
    • , H. W. Doyle
    • , R. P. Drake
    • , J. Fyrth
    • , E. T. Gumbrell
    • , M. Koenig
    • , C. Krauland
    • , C. C. Kuranz
    • , B. Loupias
    • , C. Michaut
    • , M. Mouchet
    • , S. Patankar
    • , J. Skidmore
    • , C. Spindloe
    • , E. R. Tubman
    • , N. Woolsey
    • , R. Yurchak
    •  &  É. Falize
  • Nature Communications | Article | open

    The Van Allen radiation belts are two zones of energetic particles encircling the Earth, but how electrons are accelerated to relativistic energies remains unclear. Here, the authors analyse a radiation belt event and provide evidence in favour of the ULF wave-driven radial diffusion mechanism.

    • Zhenpeng Su
    • , Hui Zhu
    • , Fuliang Xiao
    • , Q.-G. Zong
    • , X.-Z. Zhou
    • , Huinan Zheng
    • , Yuming Wang
    • , Shui Wang
    • , Y.-X. Hao
    • , Zhonglei Gao
    • , Zhaoguo He
    • , D. N. Baker
    • , H. E. Spence
    • , G. D. Reeves
    • , J. B. Blake
    •  &  J. R. Wygant