Collection |

Plasma Physics

Plasma exists in a mixed form of electrons, positive ions and neutral atoms or molecules and plays an important role in many processes; from astrophysical solar flares to nuclear fusion devices for energy applications. There is a strong research interest both in theory and experiment to understand how the plasma energy is transferred into other forms and how plasma behaves in different environments. Investigating these processes under extreme conditions in a table-top setting has become feasible due to the availability of high-power lasers.

In this collection we highlight a selection of recent experimental and theoretical research papers published on this multidisciplinary topic in Nature Communications. These articles feature research on fundamental plasma processes that are relevant to astrophysical events, energy transfer from laser to the particles during their acceleration, material development for plasma confinement and nuclear reactions in plasma fusion devices. This collection showcases the variety of research that different communities can bring together to better understand the ubiquitous processes in plasma.

Intense laser pulses can induce the propagation of coherent waves through a plasma, which are useful for accelerating electrons. Here, the authors use a genetic algorithm and a deformable mirror to optimize the wavefront and improve electron beam intensity and divergence.

Article | | Nature Communications

Controlling and improving electron beam parameters are crucial for their application in free electron laser and X-ray sources. Here the authors generate quality electron beams with reduced energy spread from plasma accelerators by using a tailored escort electron bunch with the main accelerating bunch.

Article | Open Access | | Nature Communications

High power lasers can produce electron-positron pairs at GeV energies, but doing so through laser–laser collisions would require exceedingly high intensities. Here the authors present an all-optical scheme for pair production by irradiating near-critical-density plasmas with two counter-propagating lasers.

Article | Open Access | | Nature Communications

Experimental investigations of the response of matter to ionization would require extremely fast ion pump pulses. Here, the authors explore a different approach observing ionisation dynamics in SiO2glass by generating synchronized proton pulses from the interaction of high-power lasers on a solid target.

Article | Open Access | | Nature Communications

Neutron beams are useful studying fundamental physics problems, fusion process and material properties. Here the authors use intense laser irradiation of deuterated nanowire array targets to create high energy density plasmas capable of efficient generation of ultrafast neutron pulses.

Article | Open Access | | Nature Communications

Table-top laser-plasma ion accelerators have many potential applications, but achieving simultaneous narrow energy spread and high efficiency remains a challenge. Here, the authors produce ion beams with up to 18 MeV per nucleon whilst keeping the energy spread reduced through a self-organized process.

Article | Open Access | | Nature Communications

Recently, there has been significant progress on the application of laser-generated proton beams in material science. Here the authors demonstrate the benefit of employing such beams in stress testing different materials by examining their mechanical, optical, electrical, and morphological properties.

Article | Open Access | | Nature Communications

Electron beam quality in accelerators is crucial for light source application. Here the authors demonstrate beam conditioning of laser plasma electrons thanks to a specific transport line enabling the control of divergence, energy, steering and dispersion and the application to observe undulator radiation.

Article | Open Access | | Nature Communications