Collection |

Plasma Physics

  • Nature Communications | Article | open

    Brown dwarfs are small stars that are believed to be made of a warm dense plasma that cannot support hydrogen fusion as larger stars do. Here, the authors present a method for studying the properties, such as resistivity, of warm dense plasmas in the laboratory.

    • N. Booth
    • , A. P. L. Robinson
    • , P. Hakel
    • , R. J. Clarke
    • , R. J. Dance
    • , D. Doria
    • , L. A. Gizzi
    • , G. Gregori
    • , P. Koester
    • , L. Labate
    • , T. Levato
    • , B. Li
    • , M. Makita
    • , R. C. Mancini
    • , J. Pasley
    • , P. P. Rajeev
    • , D. Riley
    • , E. Wagenaars
    • , J. N. Waugh
    •  &  N. C. Woolsey
  • Nature Communications | Article

    Magnetic reconnection occurs close to the surface of the sun, in the Earth’s magnetosphere and in astronomical plasmas. Here, the authors investigate magnetic reconnection in a laboratory-based experiments with an asymmetric configuration similar to those found in real astrophysical situations.

    • M.J. Rosenberg
    • , C.K. Li
    • , W. Fox
    • , I. Igumenshchev
    • , F.H. Séguin
    • , R.P.J. Town
    • , J.A. Frenje
    • , C. Stoeckl
    • , V. Glebov
    •  &  R.D. Petrasso
  • Nature Communications | Article | open

    Understanding the role of magnetic turbulence in the atmosphere is difficult as direct access is limited, but latest laser technology can enable such studies in the lab. Here the authors probe the evolution of such turbulence in laser-generated plasma with its implications to astrophysical environments.

    • Gourab Chatterjee
    • , Kevin M. Schoeffler
    • , Prashant Kumar Singh
    • , Amitava Adak
    • , Amit D. Lad
    • , Sudip Sengupta
    • , Predhiman Kaw
    • , Luis O. Silva
    • , Amita Das
    •  &  G. Ravindra Kumar
  • Nature Communications | Article | open

    Exploring astrophysical turbulent effects in laboratory plasma is challenging due to high threshold values of relevant parameters, such as the magnetic Reynolds number. Here the authors demonstrate the turbulent dynamo effect at large magnetic Reynolds numbers in laser-generated magnetized plasma.

    • P. Tzeferacos
    • , A. Rigby
    • , A. F. A. Bott
    • , A. R. Bell
    • , R. Bingham
    • , A. Casner
    • , F. Cattaneo
    • , E. M. Churazov
    • , J. Emig
    • , F. Fiuza
    • , C. B. Forest
    • , J. Foster
    • , C. Graziani
    • , J. Katz
    • , M. Koenig
    • , C.-K. Li
    • , J. Meinecke
    • , R. Petrasso
    • , H.-S. Park
    • , B. A. Remington
    • , J. S. Ross
    • , D. Ryu
    • , D. Ryutov
    • , T. G. White
    • , B. Reville
    • , F. Miniati
    • , A. A. Schekochihin
    • , D. Q. Lamb
    • , D. H. Froula
    •  &  G. Gregori
  • Nature Communications | Article | open

    Stationary radiative shocks are expected to form above the surface of highly-magnetized white dwarves in binary systems, but this cannot be resolved by telescopes. Here, the authors report a laboratory experiment showing the evolution of a reverse shock when both ionization and radiative losses are important.

    • J. E. Cross
    • , G. Gregori
    • , J. M. Foster
    • , P. Graham
    • , J. -M. Bonnet-Bidaud
    • , C. Busschaert
    • , N. Charpentier
    • , C. N. Danson
    • , H. W. Doyle
    • , R. P. Drake
    • , J. Fyrth
    • , E. T. Gumbrell
    • , M. Koenig
    • , C. Krauland
    • , C. C. Kuranz
    • , B. Loupias
    • , C. Michaut
    • , M. Mouchet
    • , S. Patankar
    • , J. Skidmore
    • , C. Spindloe
    • , E. R. Tubman
    • , N. Woolsey
    • , R. Yurchak
    •  &  É. Falize
  • Nature Communications | Article | open

    The Van Allen radiation belts are two zones of energetic particles encircling the Earth, but how electrons are accelerated to relativistic energies remains unclear. Here, the authors analyse a radiation belt event and provide evidence in favour of the ULF wave-driven radial diffusion mechanism.

    • Zhenpeng Su
    • , Hui Zhu
    • , Fuliang Xiao
    • , Q.-G. Zong
    • , X.-Z. Zhou
    • , Huinan Zheng
    • , Yuming Wang
    • , Shui Wang
    • , Y.-X. Hao
    • , Zhonglei Gao
    • , Zhaoguo He
    • , D. N. Baker
    • , H. E. Spence
    • , G. D. Reeves
    • , J. B. Blake
    •  &  J. R. Wygant
  • Nature Communications | Article | open

    Since the 1970s space missions have observed `equatorial noise' — noise-like plasma waves closely confined to the magnetic equatorial region of Earth s magnetosphere. Here, the authors uncover their structured and periodic frequency pattern, revealing that they are generated by proton distributions.

    • Michael A. Balikhin
    • , Yuri Y. Shprits
    • , Simon N. Walker
    • , Lunjin Chen
    • , Nicole Cornilleau-Wehrlin
    • , Iannis Dandouras
    • , Ondrej Santolik
    • , Christopher Carr
    • , Keith H. Yearby
    •  &  Benjamin Weiss
  • Nature Communications | Article | open

    Relativistic electrons trapped in the Van Allen radiation belts sometimes exhibit a minimum of their pitch angle distribution at 90°. Here, the authors explain the origin of this phenomenon in terms of chorus and magnetosonic waves through simulations and observations of a geomagnetic storm data.

    • Fuliang Xiao
    • , Chang Yang
    • , Zhenpeng Su
    • , Qinghua Zhou
    • , Zhaoguo He
    • , Yihua He
    • , D. N. Baker
    • , H. E. Spence
    • , H. O. Funsten
    •  &  J. B. Blake
  • Nature Communications | Article | open

    Alfvén waves are fundamental plasma modes that provide a mechanism for the transfer of energy between particles and fields. Here the authors confirm experimentally the conservative energy exchange between Alfvén wave fields and plasma particles via high-resolution MMS observations of Earth’s magnetosphere.

    • Daniel J. Gershman
    • , Adolfo F-Viñas
    • , John C. Dorelli
    • , Scott A. Boardsen
    • , Levon A. Avanov
    • , Paul M. Bellan
    • , Steven J. Schwartz
    • , Benoit Lavraud
    • , Victoria N. Coffey
    • , Michael O. Chandler
    • , Yoshifumi Saito
    • , William R. Paterson
    • , Stephen A. Fuselier
    • , Robert E. Ergun
    • , Robert J. Strangeway
    • , Christopher T. Russell
    • , Barbara L. Giles
    • , Craig J. Pollock
    • , Roy B. Torbert
    •  &  James L. Burch
  • Nature Communications | Article | open

    Vortex-induced reconnection originates from non-linear vortex flows due to Kelvin-Helmholtz instability in the Earth’s magnetosphere. Here, the authors perform a large-scale kinetic simulation to unveil dynamics of the vortex-induced reconnection and resulting turbulent mixing process.

    • T. K. M. Nakamura
    • , H. Hasegawa
    • , W. Daughton
    • , S. Eriksson
    • , W. Y. Li
    •  &  R. Nakamura
  • Nature Communications | Article | open

    Magnetic reconnection is a fundamental process giving rise to topology change and energy release in plasmas, of particular relevance for the Sun. Here the authors report the observation of fast reconnection in a solar filament eruption, which occurs between a set of ambient fibrils and the filament itself.

    • Zhike Xue
    • , Xiaoli Yan
    • , Xin Cheng
    • , Liheng Yang
    • , Yingna Su
    • , Bernhard Kliem
    • , Jun Zhang
    • , Zhong Liu
    • , Yi Bi
    • , Yongyuan Xiang
    • , Kai Yang
    •  &  Li Zhao
  • Nature Communications | Article | open

    Magnetic reconnection is a fundamental energy release process taking place in various astrophysical environments, but it is difficult to observe it directly. Here, the authors provide evidence of three-dimensional magnetic reconnection in a solar eruption using combined perspectives of two spacecraft.

    • J. Q. Sun
    • , X. Cheng
    • , M. D. Ding
    • , Y. Guo
    • , E. R. Priest
    • , C. E. Parnell
    • , S. J. Edwards
    • , J. Zhang
    • , P. F. Chen
    •  &  C. Fang
  • Nature Communications | Article | open

    Alfvénic waves are oscillations that occur in a plasma threaded by a magnetic field and their propagation, reflection and dissipation is believed to be partly responsible for the solar wind. Here, the authors observe the counter-propagating Alfvénic waves that most models require for solar-wind acceleration.

    • R. J. Morton
    • , S. Tomczyk
    •  &  R. Pinto
  • Nature Communications | Article | open

    Although magnetic reconnection is recognized as the dominant mode for solar wind plasma to enter the magnetosphere, Kelvin–Helmholtz waves (KHW) have been suggested to also be involved. Here, the authors use 7 years of THEMIS data to show that KHW occur 19% of the time, and may be important for plasma transport.

    • Shiva Kavosi
    •  &  Joachim Raeder
  • Nature Communications | Article | open

    Both fast and slow solar winds emanate from our Sun, although the source of the slow component remains elusive. Towards identifying this, Brooks et al. present full-Sun spectral images from Hinode, combined with magnetic modelling, to produce a solar wind source map.

    • David H. Brooks
    • , Ignacio Ugarte-Urra
    •  &  Harry P. Warren
  • Nature Communications | Article | open

    Plasma releases magnetic energy by magnetic reconnection but the clear evidence of this phenomenon in relativistic regime is still lacking. Here the authors present a scheme for laboratory observation of the relativistic magnetic reconnection driven by laser-produced energetic electrons in the plasma.

    • Longqing Yi
    • , Baifei Shen
    • , Alexander Pukhov
    •  &  Tünde Fülöp
  • Nature Communications | Article | open

    Radiation and conduction are generally considered as the main energy transport mechanisms for the evolution of early supernova remnants. Here the authors experimentally show the role of electron heat transfer on the growth of Rayleigh–Taylor instability in young supernova remnants.

    • C. C. Kuranz
    • , H.-S. Park
    • , C. M. Huntington
    • , A. R. Miles
    • , B. A. Remington
    • , T. Plewa
    • , M. R. Trantham
    • , H. F. Robey
    • , D. Shvarts
    • , A. Shimony
    • , K. Raman
    • , S. MacLaren
    • , W. C. Wan
    • , F. W. Doss
    • , J. Kline
    • , K. A. Flippo
    • , G. Malamud
    • , T. A. Handy
    • , S. Prisbrey
    • , C. M. Krauland
    • , S. R. Klein
    • , E. C. Harding
    • , R. Wallace
    • , M. J. Grosskopf
    • , D. C. Marion
    • , D. Kalantar
    • , E. Giraldez
    •  &  R. P. Drake
  • Nature Communications | Article | open

    The periodical change of the Crab nebula’s jet direction challenges our understanding of astrophysical jet dynamics. Here the authors use high-power lasers to create a jet that can be directly compared to the Crab nebula’s, and report the detection of plasma instabilities that mimic kink behaviour.

    • C. K. Li
    • , P. Tzeferacos
    • , D. Lamb
    • , G. Gregori
    • , P. A. Norreys
    • , M. J. Rosenberg
    • , R. K. Follett
    • , D. H. Froula
    • , M. Koenig
    • , F. H. Seguin
    • , J. A. Frenje
    • , H. G. Rinderknecht
    • , H. Sio
    • , A. B. Zylstra
    • , R. D. Petrasso
    • , P. A. Amendt
    • , H. S. Park
    • , B. A. Remington
    • , D. D. Ryutov
    • , S. C. Wilks
    • , R. Betti
    • , A. Frank
    • , S. X. Hu
    • , T. C. Sangster
    • , P. Hartigan
    • , R. P. Drake
    • , C. C. Kuranz
    • , S. V. Lebedev
    •  &  N. C. Woolsey