Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Physics-informed machine learning and its real-world applications
Submission status
Closed
Submission deadline
Advances in machine learning (ML) and deep learning (DL) are undoubtedly enabling significant breakthroughs in all areas of science and technology. ML/DL models, however, do not necessarily obey the fundamental governing laws of physical systems and often fail to describe and predict scenarios beyond the ones they have been trained on. In addition, training deep neural networks requires a huge amount of quality data, which is not always available for scientific problems. To solve these challenges, a new paradigm that integrates physical principles into ML models is emerging: physics-informed machine learning. Incorporating physics into ML models makes it possible to build physically consistent predictive models which are faster to train, more generalizable, interpretable, and trustworthy.
This Collection aims to gather the latest advances in physics-informed machine learning applications in sciences and engineering. Submissions that provide evidence of scalable, robust, and reliable physics-informed machine learning approaches for large-scale, real-world applications are particularly welcome.