Collection |

Nobel Prize in Physics 2018

This collection of research papers, reviews, commentaries and associated content from Nature Research celebrates the 2018 Nobel Prize in Physics for “ground-breaking inventions in the field of laser physics”. Half of the prize has been awarded to Arthur Ashkin for the invention of optical tweezers and their application in biology. The other half has been awarded to Gérard Mourou and Donna Strickland for the invention of the chirped pulse amplification method for generating high-intensity, ultra-short optical pulses which underpins applications such as laser eye surgery, laser fusion and laser particle acceleration. This collection illustrates the breadth, diversity and impact that these optical techniques have had in science.

Based on a passively phase-locked superposition of a dispersive wave and a soliton from two branches of a femtosecond Er-doped fibre laser, researchers demonstrate that single cycles of light can be achieved using existing fibre technology and standard free-space components. The pulses have a pulse duration of 4.3 fs, close to the shortest possible value for a data bit of information transmitted in the near-infrared.

Letter | | Nature Photonics

Short laser pulses of femtosecond time scales are in high demand in order to explore the fast electron dynamics in light-matter interactions. Here, the authors demonstrated the compression of free electron laser pulses in the extreme ultraviolet range by using a chirped pulse amplification technique.

Article | open | | Nature Communications

Spatially coherent 11.45 nm radiation is produced by outcoupling the harmonics of cavity-enhanced nonlinearly compressed pulses from a Yb-based laser through a pierced cavity mirror. This technique may lead to high-photon-flux ultrashort-pulse extreme-ultraviolet sources for use in a wide range of applications.

Letter | | Nature Photonics

Recently, there has been significant progress on the application of laser-generated proton beams in material science. Here the authors demonstrate the benefit of employing such beams in stress testing different materials by examining their mechanical, optical, electrical, and morphological properties.

Article | open | | Nature Communications