Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Materials science and chemistry encompasses experimental and computational research that aims to understand and exploit relationships between structures and properties of materials. On this page, we highlight exciting research in materials design, fabrication, physicochemical characterization, and functional properties.
Chiral plasmonic nanoparticles are of great interest in nanotechnology. Here, the authors demonstrate chiral shape guidance by single-stranded oligonucleotides during particle growth based on sequence-specific hydrogen bonding within the strand.
Chemical vapor deposition enables the scalable production of 2D semiconductors, but the grown materials are usually affected by high defect densities. Here, the authors report a hydroxide vapour phase deposition method to synthesize wafer-scale monolayer WS2 with reduced defect density and electrical properties comparable to those of exfoliated flakes.
All-in-liquid printing promises applications from energy storage to drug delivery and tissue engineering. Here, authors present the in-situ generation of layered emulsion in a fraction of a second at the oil-water interface forming 3D tube-like structures in a liquid medium.
High charge density is the foundation to promote a wide range of applications of triboelectric nanogenerators. Here, authors propose a processing method based on the repeated rheological forging of triboelectric polymers achieving an enhanced triboelectricity and further study its mechanism.
Reliable transfer techniques are critical for the integration of 2D materials with arbitrary substrates. Here, the authors describe a method to transfer 4-inch and A4-sized defect-free graphene films onto rigid and flexible substrates with controllable conformal contact, leading to improved electrical properties and uniformity.
High extraction capacity with precise selectivity to trace amounts of gold over a wide range of co-existing elements remains a challenge for effective e-waste recycling. Here, authors demonstrate the excellent performance of rGO for gold extraction from e-waste leachate, even at minute concentrations.
Tip-enhanced vibrational spectroscopy at room temperature is complicated by molecular conformational dynamics, photobleaching, contaminations, and chemical reactions in air. This study demonstrates that a sub-nm protective layer of Al2O3 provides robust conditions for probing single-molecule conformations.
Structural colors are often produced by periodic structured materials leading to the constructive interference of light waves. Here, the authors report control of structural color and light transmission via a colloidal gel and dynamic coloration with a precise wavelength selectivity over a broad range of wavelengths by taking advantage of the Christiansen effect.
The spatial configuration of nanostructure building blocks determines the physical and optical properties of their superstructures. Here, the authors report on complex nanoparticles in which different geometric forms of nanoframes are nested into a single entity by multistep chemical reactions.
Guiding chemical reactions in a predictable and controllable manner is an ultimate goal of chemistry. Here, the authors show tuning of the single-molecule Mizoroki-Heck catalytic cycle through electrical gating and direct in-situ detection.
The formation of nanostructures with chiral symmetry often requires chiral directing agents at a smaller length scale. Here, the authors report the self-assembly of 2D chiral superlattices from achiral tetrahedron-shaped building blocks.
Rare earth elements are essential to electrified infrastructure and clean energy production. Here, authors show reagent- and energy-efficient separation of lanthanides from secondary feedstock using dimethyl ether-driven fractional crystallization.
Covalent organic frameworks (COF) hold great promise in filtration and separation but combining facile processing, high crystallinity and high separation performance remains challenging. Here, the authors demonstrate that heterocrystalline COF membranes in which high-crystalline regions are tightly linked by low-crystalline regions can improve molecular sieving properties at high solvent flux.
Ionic covalent organic frameworks (iCOFs) are new examples of porous materials and show great potential for various applications. Here, the authors demonstrate functionalization of an iCOFs with suitable emission sites and application as chemosensor for amine detection with high sensitivity which can be used to monitor meat spoilage.
Nanoparticles that can disperse in a broad range of solvents are desirable. Here, the authors report nanoparticles featuring rotatable surface ligands that enable the formation of stable dispersions in a wide range of solvents.
Organic materials with both aggregation induced emission (AIE) and aggregation-caused quenching (ACQ) effects that can emit with multiple wavelengths in the solution and aggregated state are rarely reported. Here, the authors report a chiral dual-emissive bismacrocycle which shows the unique ACQ and AIE effects inducing redshift emission with near white-light emission.
Although mature and systematic theories of molecular photophysics have been developed, it is still challenging to endow clusteroluminogens (CLgens) with designed photophysical properties by manipulating through-space interactions. Here, the authors design three CLgens that show multiple emissions and white-light emission in the crystalline state, and emphasize the important role of secondary through-space interactions between the acceptor and non-conjugated donor units.
Several biomaterials have been promised as suitable candidates for photonic materials and pigments, but their fabrication processes have been limited to the small to medium-scale production of films. Here, the authors demonstrate a substrate-free process to fabricate structurally coloured microparticles via the confined self-assembly of a cholesteric cellulose nanocrystal (CNC) suspension within emulsified microdroplets.
Membrane distillation is susceptible to thermal inefficiency and membrane wetting issues during seawater desalination. Here, authors design a MXene-engineered membrane that imparts efficient localized photothermal effect and strong water repellency, achieving sustainable freshwater production.
Nanoplastic water pollution represents an increasing concern. Here, photogravitactic MXene-derived microrobots are programmed to trap nanoplastics in the layered structure and magnetically transfer them to low-cost electrodes for further detection.
Temperature and pressure are typically dependent parameters in hydrothermal processes. Here, authors devise a hydrothermal system that allows independent control of these parameters and realize low-temperature fast synthesis of carbon sub-micron spheres directly from cellulose at higher pressure.
While a hallmark of living systems, developing sensory-motor interactions in inanimate systems remains challenging. Here, authors show that nanoporous surfaces can be used to create stimuli-responsive droplet interplay with shape transformation and complex behaviours reminiscent of living cell actions.
Stable interfaces between immiscible solvents are crucial for chemical synthesis and assembly, but interfaces between miscible solvents have been less explored. Here the authors report the spontaneous water-on-water spreading and self-assembly of polyelectrolytes.
Chiral emitters with high photoluminescence quantum yield are desirable for use in circularly polarized LEDs. The authors demonstrate the transfer of chirality from nanoscale copper iodide clusters to microscale chiral luminescent polycrystals by non-classical crystallization.
Organized microfibrillation can be used to optically printing well-defined porosity with high resolution into thin polymer films. Here, the authors use this method to create self-enclosed microfluidic devices in different flexible substrates and exploit the intrinsic appearance of structural colours for sensing application
The sheer number of parameters in deep learning makes the physical interpretation of failure predictions in glasses challenging. Here the authors use Grad-CAM to reveal the role of topological defects and local potential energies in failure predictions.
Dislocation engineering is important for designing structural materials. Here the authors demonstrate that a high-entropy oxide ceramic with a high density of edge dislocations can be stabilized by increasing the compositional complexity, resulting in enhanced fracture toughness.
In biology, information is stored and processed using highly evolved molecules in bistable states. Here, the authors demonstrate bistability in a synthetic system without the need for evolved biomolecules or autocatalytic networks.
Porous liquids are potentially useful materials for the identification and separation of non-gaseous compounds. Herein, the authors report a type II porous ionic liquid with permanent porosity and high selectivity towards l-tryptophan (l-Trp) over other aromatic amino acids.
Existing neural network potentials are generally designed for narrow target materials. Here the authors develop a neural network potential which is able to handle any combination of 45 elements and show its applicability in multiple domains.
Polymeric membranes are extensively used in water desalination, but the effect of membrane nanostructure on water transport is still elusive. The authors, using quasi-elastic neutron scattering and contrast variation techniques, provide detailed insight into the dynamics of the polymer network and confined water across a wide range of length and timescales.
To understand and predict friction, it is crucial to observe sliding at the nanoscale to uncover the mechanisms at play. Here, the authors show that nano-contacts exhibit strength near the ideal limit, and find that pull-off forces predicted by continuum models are reduced by shearing.
Well-defined nanostructuring is a feasible concept to achieve nanostructured arrays with unique properties. Here the authors report fabrication of designable anodic aluminum oxide templates with controllable in-plane and out-of-plane shapes, sizes, spatial configurations, and pore combinations.
Double-gyroid networks assemble in diverse soft materials, yet the molecular packing that underlies their complex structure remains obscure. Here, authors advance a theory that resolves a long-standing puzzle about their formation in block copolymers.
Glass-to-glass transitions can help understanding the glass nature, but it remains difficult to tune metallic glasses into significantly different glass states. Here the authors demonstrate the high-entropy effects in glass-to-glass transitions of high-entropy metallic glasses.
Being able to control motion at the molecular level is vital for many future developments in the molecular sciences. Here, the authors report the controlled forward and backward rotation of a molecular motor guided by external stimuli.
Compounds displaying aggregation-induced emission behavior may have application in the preparation of smart materials. Here, the authors report a luminogen-containing metal-organic framework for which luminescence intensity changes are observed in response to gas pressure.
Structural disorder in materials is challenging to characterise. Here, the authors use multivariate analysis of atomic pair distribution functions to study structural collapse and melting of metal–organic frameworks, revealing powerful mechanistic and kinetic insight.
Preparing triangulene-based high spin structures is of interest for molecular spintronics. Here, the authors generate high spin triangulene trimers on Au(111) via a surface-assisted dehydration reaction.
Metallic microsamples deform in a sequence of abrupt strain bursts. Here, the authors demonstrate by analysing the elastic waves emitted by these bursts that this intermittent process resembles earthquakes in several aspects, although on completely different spatial and temporal scales.
Engineering applications of nanostructured metals are limited by their complex manufacturing technology and poor microstructural stability. Here the authors report a facile technology that enables a mass production of nanostructured Ti6Al4V5Cu alloys with high microstructural stability.
Application of magnetic refrigeration (MR) for hydrogen liquefaction is limited by lack of MR materials with a large magnetocaloric effect (MCE). Here the authors show a series of MR materials with a large and reversible MCE operating at a full temperature range required for hydrogen liquefaction.
The application of photoswitches as light-responsive triggers for phase transitions of porous materials remains poorly explored. Here, the authors report a light-responsive flexible metal-organic framework which undergoes pore contraction upon combined application of light irradiation and adsorption stress via a buckling process of the framework-embedded azobenzene photoswitch.
Functionalization of aerogel fibers, characterized by high porosity and low thermal conductivity, to obtain multifunctional materials is highly desirable. Here the authors report hygroscopic holey graphene aerogel fibers hosting LiCl salt, enabling moisture capture, heat allocation, and microwave absorption performance.
Investigating and tailoring the thermodynamic properties of different fluids is crucial to many applied fields such as energy and refrigeration cycles. Here, authors use multistable, gas filled, particles suspension to enhance the macro-properties of thermodynamic fluids.
While origami-inspired metamaterials can spatially fold, they usually collapse along the deployment direction limiting applicability. Here authors introduce a cellular structure that can be reprogrammed in-situ to not only deploy and rigidly flat-fold but also lock and offer rigidity across all directions.
Borophene exhibits attractive electronic and optical properties, but its instability has so far limited its applications. Here, the authors report the synthesis of a liquid-state borophene analogue showing a good thermal stability up to 350 °C and an electrically-controlled optical switching behaviour.
The large-area growth of 2D transition metal dichalcogenides (TMDs) requires a precise control of metal and chalcogen precursors. Here, the authors implement a strategy using active chalcogen monomer supply to grow monolayer TMDs and their alloys, showing low defect density and improved optoelectronic properties.
Nature-inspired design motifs have contributed to the development of advanced materials. Here the authors present a segmental design motif to realize a compression-resisting lightweight mechanical metamaterial with a progressive failure behavior and rotational degree of freedom.
There are few well-balanced heat storage materials up to date. Here, the authors report that δ-type K0.33MnO2 ∙ nH2O can be an excellently balanced heat storage material exhibiting a “water-intercalation mechanism”.