Focus |

Energy

With this page, we aim to highlight the most interesting research works published by Nature Communications in the broad topic of energy. Our ultimate goal is to stimulate debate in the multiple fields where energy is the core.

Featured articles

Authors demonstrate Si-based MIS photoanodes using Al thin-film reactions to create localized conduction paths through the insulator and Ni electrodeposition to form metal catalyst islands. These approaches yielded low onset potential, high saturation current density, and excellent stability.

Article | Open Access | | Nature Communications

It is of high demand yet challenging to boost the efficiency of solar driven hydrogen peroxide synthesis. Herein, the authors intergrade perovskite-based photocathode and oxidised buckypaper for unassisted solar H2O2 production with a solar-to-chemical conversion efficiency of ~1.463 %.

Article | Open Access | | Nature Communications

Designing electrode materials for mild and additive-free activation of C–H bonds is of great challenge. The authors report the application of electron-deficient W2C nanocrystal electrodes to boost the dissociation of C-H bonds toward the efficient alkoxylation and hydrogen evolution reactions.

Article | Open Access | | Nature Communications

Development of all-solid-state batteries requires stable solid electrolyte-electrode interfaces. Here, via exchange-NMR measurements, the authors investigate the positive electrode-solid electrolyte interface, revealing the impact of an inorganic coating on the Li-ion transport properties.

Article | Open Access | | Nature Communications

CO2 conversion driven by light is a promising strategy to synchronously overcome global warming and energy-supply issues. Here the authors show that the sulfur defect engineering on a quaternary AgInP2S6 atomic layer can excitingly change the CO2 photoreduction reaction pathway to the generation of ethene.

Article | Open Access | | Nature Communications

The high platinum loadings at the cathodes of proton exchange membrane fuel cells significantly contribute to the cost of these clean energy conversion devices. Here, the authors critically review and discuss recent developments on low- and non-platinum-based cathode catalysts and catalyst layers.

Review Article | Open Access | | Nature Communications

The Z-scheme photocatalytic system is promising for producing renewable energy by sunlight, but the optimization of multiple materials is challenging. Here, authors directly map out the photocatalytic activity on a microscopic scale by the clustering analysis for the time-resolved image sequence.

Article | Open Access | | Nature Communications

Large-scale manufacturing of high-energy Li-ion cells is of paramount importance for developing efficient rechargeable battery systems. Here, the authors report in-depth discussions and evaluations on the use of silicon-containing anodes together with insertion-based cathodes.

Review Article | Open Access | | Nature Communications

Seawater electrolysis is promising for grid-scale H2 production without freshwater reliance, but high energy costs and detrimental Cl chemistry reduce its practical potential. Here, authors developed an energy-saving hybrid seawater electrolyzer for chlorine-free H2 production and N2H4 degradation.

Article | Open Access | | Nature Communications

Ultrafast diffraction is fundamental in capturing the structural dynamics of molecules. Here, the authors establish a variant of quantum state tomography for arbitrary degrees of freedom to characterize the molecular quantum states, which will enable the reconstruction of a quantum molecular movie from diffraction data.

Article | Open Access | | Nature Communications

High-nitrogen content polyhedral molecules are of fundamental interest for theory and for synthesis applications. The authors, using isomer selective, tunable soft photoionization reflectron time-of-flight mass spectrometry, identify the formation of a hitherto elusive prismatic P3N3 molecule during sublimation of PH3 and N2 ice mixtures exposed to energetic electrons.

Article | Open Access | | Nature Communications

Suppressing phase transitions is crucial for the layered lithium/sodium transition metal oxide cathodes in batteries. Here, the authors report a water-mediated strategy to mitigate the phase transitions and boost electrochemical performances of manganese-based layered cathodes for cost-effective Na-ion batteries.

Article | Open Access | | Nature Communications

Controlled generation of reactive oxygen species (ROS) is essential in biological, chemical, and environmental fields. Here, the authors report that ultrasonication can induce polarization of inert poly(tetrafluoroethylene) to a piezoelectric electret and drive piezocatalytic generation of aqueous ROS.

Article | Open Access | | Nature Communications

Polymer electrolyte fuel cells are promising but suffer from low performance. Here, the authors use a combination of electrochemical measurements and molecular dynamics simulations to reveal the role of the highly oxygen permeable ionomer in polymer electrolyte fuel cells that enhances the oxygen transport and catalytic activity.

Article | Open Access | | Nature Communications

Two-dimensional covalent organic frameworks are expected to boost photocatalytic H2 evolution from water splitting, but are not stable in photocatalysis. Here, authors demonstrate that photocatalytic performances can be enhanced by stabilizing layered stacking via a polymer-infiltration strategy.

Article | Open Access | | Nature Communications

A highly efficient, stable, low-cost and environmentally friendly photocathode is the goal of practical solar hydrogen evolution applications. Here, authors report a Cu3BiS3-based photocathode and Cu3BiS3-BiVO4 tandem cell for unbiased overall solar water splitting with a STH efficiency over 2%.

Article | Open Access | | Nature Communications

Quantification of Li ions in local area is key to understand the degradation of Li ion batteries. Here the authors report Li compositional gradient evolution in the cathode after charge-discharge cycles using a complementary study via atom probe tomography and scanning transmission electron microscopy.

Article | Open Access | | Nature Communications

High-performance cathode materials are crucial for the development of solid oxide fuel cells. Here, the authors present a nanoengineering approach to boost cathode performance in conventional anode-supported cells, demonstrating a viable route to attaining higher power output.

Article | Open Access | | Nature Communications

The current biorefineries yield lignin with inadequate fractionation for bioconversion, yet substantial changes of these biorefinery designs could jeopardize carbohydrate efficiency and increase capital costs. Here the authors resolve the dilemma by designing ‘plug-in processes of lignin’ to enable economic waste valorization.

Article | Open Access | | Nature Communications

Electrocatalytic nanocarbon (EN) is a class of materials receiving intense interest as next generation electrocatalysts. Although impressive platforms, work is still required to develop our mechanistic understanding of them to that of molecular electrocatalysts.

Review Article | Open Access | | Nature Communications

Performance of perovskite photovoltaics is greatly affected by undesirable defects that contribute to non-radiative losses. Here, the authors mitigate these losses by doping perovskite with KI to alter the dielectric response, thus defect capturing probability, resulting in inverted device with PCE of 22.3% and low voltage loss.

Article | Open Access | | Nature Communications

Liquefied gas electrolytes (LGE) can enable the operation of electrochemical devices in cold conditions but their high vapour pressure poses safety concerns. Here, the authors show that the nano-confinement effect of metal-organic framework allows battery with LGE to work at low temperature and reduced pressure.

Article | Open Access | | Nature Communications

The scale-up of the coupling of water electroreduction (HER) with organic electrooxidation remains challenging. Here the authors address this challenge by coupling HER with electrooxidation of raw biomass chitin, cogenerating acetate and green hydrogen safely at high current density.

Article | Open Access | | Nature Communications

Concentrating photo-intensities on photocatalyst has diminishing returns. Here the authors show the catalyst on glass rod waveguide at optimal low intensity results in high efficiency in the gas phase reverse water gas shift reaction in an annular glass cylindrical rod photoreactor.

Article | Open Access | | Nature Communications

Understanding the mechanism of non-radiative losses in organic photovoltaics is crucial to improve the performance further. Here, the authors use combined device and spectroscopic data to reveal universal model to maximise exciton splitting and charge separation by adjusting the energy of charge transfer state.

Article | Open Access | | Nature Communications