Focus |

Energy Materials

Jacilynn Brant: energy storage and conversion.

Adam Weingarten: electrocatalytic and photocatalytic energy conversion applications.

Yaoqing Zhang: electrochemical energy storage, batteries, solid state ionics, and some aspects of inorganic chemistry.

Welcome to the Nature Communications Editors’ Highlights webpage on energy materials. Each month our editors select a small number of Articles recently published in Nature Communications that they believe are particularly interesting or important.

The aim is to provide a snapshot of some of the most exciting work published in the area of energy materials at Nature Communications.

Make sure to check the Editors' Highlights page each month for new featured articles.

Photoelectrochemical water splitting presents an integrated means storing sunlight into fuels, yet high optical losses and corrosion limit device performance. Here, authors boost absorption and durability in gallium-indium phosphide photocathodes via a sulfurized and nanostructured protection layer.

Article | Open Access | | Nature Communications

While photoredox catalysis provides organic chemistry new avenues for chemical reactions, typical photocatalysts require expensive noble metals and show modest stabilities. Here, authors examine lead halide perovskites nanocrystals as stable and tunable photoredox catalysts for organic synthesis.

Article | Open Access | | Nature Communications

High-entropy metallic glasses are an unexplored class of nanomaterials and are difficult to prepare. Here, the authors present an electrosynthetic method to design these materials with up to eight tunable metallic components and show multifunctional electrocatalytic water splitting capabilities.

Article | Open Access | | Nature Communications

While cuprous oxide is a promising solar-to-fuel conversion material, photoelectrochemical devices substantially underperform. Here, the authors use femtosecond time-resolved two-photon photoemission spectroscopy to correlate photoexcited electron energetics and dynamics with performance losses.

Article | Open Access | | Nature Communications

Renewable hydrogen technologies are promising for alternative energy, but are encumbered by the kinetics of electrochemical reactions in harsh conditions. Here, authors report nitrogen-modified hafnium oxyhydroxide for electrocatalysis of hydrogen evolution and oxidation reactions in acidic media.

Article | Open Access | | Nature Communications

While CO2 reduction proves an appealing means to convert greenhouse emissions to high-value products, there are few materials capable of such a conversion. Here, the authors demonstrate a liquid-metal electrocatalyst to convert CO2 directly into solid carbon that can be used as capacitor electrodes.

Article | Open Access | | Nature Communications