Focus |

Energy Materials

Prateek Dongare: mechanistic analysis of energy materials.

Benjamin Martindale: electrocatalysis and electrochemical devices.

Adam Weingarten: (photo/electro)-catalytic energy conversion.

Yaoqing Zhang: solid state ionics and electrochemical energy storage.

Welcome to the Nature Communications Editors’ Highlights webpage on energy materials. Each month our editors select a small number of Articles recently published in Nature Communications that they believe are particularly interesting or important.

The aim is to provide a snapshot of some of the most exciting work published in the area of energy materials at Nature Communications.

Make sure to check the Editors' Highlights page each month for new featured articles.

Proton-coupled electron transfer (PCET) has been observed in chemical, energy, and biological transformation processes. Here we demonstrate that the rate of PCET and oxygen evolution reaction can be dramatically enhanced by tuning crystal orientation and the correlated proton diffusion.

Article | Open Access | | Nature Communications

While single atom catalysis combines heterogeneous materials with molecular understanding, the role of the single atoms remains vague. Here, authors examine single Ni on MoS2 via in situ X-ray absorption spectroscopy to reveal the intermediate and catalytically active species.

Article | Open Access | | Nature Communications

The synthesis of high concentration H2O2 from water and oxygen at moderate conditions could provide an on-site H2O2 source for medical and water purification applications. Here, authors show Al2O3-stabilized PtP2 nanocrystals to enable selective, stable and efficient neutral pH H2O2 production.

Article | Open Access | | Nature Communications

The simultaneous management of optical, electrical, and catalytic properties is challenging for photoelectrochemical devices. Here, authors design Si back-buried junction photoelectrodes that can be series connected for unassisted water-splitting with a high solar-to-hydrogen efficiency of 15.62%.

Article | Open Access | | Nature Communications

While biomass may serve as a renewable source of carbon-neutral hydrogen, it is challenging both to utilize as-found bio-resources and to suppress CO2 formation. Here, authors convert wet, salty seaweed using alkaline thermal treatment to produce high-purity hydrogen and suppress carbon emission.

Article | Open Access | | Nature Communications

The large-scale implementation of electrochemical technologies will require the high-throughput production of high-performance, inexpensive catalysts. Here, authors demonstrate earth abundant molybdenite as raw materials to produce efficient MoS2 catalysts for high current density H2 evolution.

Article | Open Access | | Nature Communications

While typical catalysts involve oxide-supported metals, inverse catalysts of oxides on metal supports offer an attractive alternative. Here, authors prepare FeOx-coated Rh nanoparticles via galvanic replacement and dissolution-precipitation to form effective CO2 reduction catalysts.

Article | Open Access | | Nature Communications