Collection |

Yeast 2.0

  • Nature Communications | Article | open

    Genome structural variation can play an important functional role in phenotypic diversity. Here the authors use the SCRaMbLE system on a ring synthetic chromosome V to generate complex rearrangements distinct from a rearranged linear chromosome.

    • Juan Wang
    • , Ze-Xiong Xie
    • , Yuan Ma
    • , Xiang-Rong Chen
    • , Yao-Qing Huang
    • , Bo He
    • , Bin Jia
    • , Bing-Zhi Li
    •  &  Ying-Jin Yuan
  • Nature Communications | Article | open

    The SCRaMbLE system integrated into Sc2.0’s synthetic yeast chromosome project allows rapid strain evolution. Here the authors use a genetic logic gate to control induction of recombination in a haploid and diploid yeast carrying synthetic chromosomes.

    • Bin Jia
    • , Yi Wu
    • , Bing-Zhi Li
    • , Leslie A. Mitchell
    • , Hong Liu
    • , Shuo Pan
    • , Juan Wang
    • , Hao-Ran Zhang
    • , Nan Jia
    • , Bo Li
    • , Michael Shen
    • , Ze-Xiong Xie
    • , Duo Liu
    • , Ying-Xiu Cao
    • , Xia Li
    • , Xiao Zhou
    • , Hao Qi
    • , Jef D. Boeke
    •  &  Ying-Jin Yuan
  • Nature Communications | Article | open

    The Sc2.0 project has built the Synthetic Chromosome Rearrangement and Modification by LoxP-mediated Evolution (SCRaMbLE) system into their synthetic chromosomes. Here the authors use SCRaMbLE to rapidly develop, diversify and screen strains for diverse production and growth characteristics.

    • B. A. Blount
    • , G-O. F. Gowers
    • , J. C. H. Ho
    • , R. Ledesma-Amaro
    • , D. Jovicevic
    • , R. M. McKiernan
    • , Z. X. Xie
    • , B. Z. Li
    • , Y. J. Yuan
    •  &  T. Ellis
  • Nature Communications | Article | open

    SCRaMbLE has been used to rearrange synthetic chromosomes that have been introduced into host yeast. Here the authors produce semi-synthetic heterozygous diploid strains for rapid selection of phenotypes and map the rearrangements underlying selected phenotypes such as thermoresistance and caffeine resistance.

    • Michael J. Shen
    • , Yi Wu
    • , Kun Yang
    • , Yunxiang Li
    • , Hui Xu
    • , Haoran Zhang
    • , Bing-Zhi Li
    • , Xia Li
    • , Wen-Hai Xiao
    • , Xiao Zhou
    • , Leslie A. Mitchell
    • , Joel S. Bader
    • , Yingjin Yuan
    •  &  Jef D. Boeke
  • Nature Communications | Article | open

    Pathway optimization and chassis engineering are usually carried out in a step-wise and trial-and-error manner. Here the authors present ’SCRaMbLE-in’ that combines in-vitro pathway rapid prototyping with in-vivo genome integration and optimization.

    • Wei Liu
    • , Zhouqing Luo
    • , Yun Wang
    • , Nhan T. Pham
    • , Laura Tuck
    • , Irene Pérez-Pi
    • , Longying Liu
    • , Yue Shen
    • , Chris French
    • , Manfred Auer
    • , Jon Marles-Wright
    • , Junbiao Dai
    •  &  Yizhi Cai
  • Nature Communications | Article | open

    SCRaMbLE allows for the rapid and large scale rearrangement of genetic data in yeast carrying synthetic chromosomes. Here the authors demonstrate an in vitro use of the method to generate DNA libraries for optimization of biochemical reactions.

    • Yi Wu
    • , Rui-Ying Zhu
    • , Leslie A. Mitchell
    • , Lu Ma
    • , Rui Liu
    • , Meng Zhao
    • , Bin Jia
    • , Hui Xu
    • , Yun-Xiang Li
    • , Zu-Ming Yang
    • , Yuan Ma
    • , Xia Li
    • , Hong Liu
    • , Duo Liu
    • , Wen-Hai Xiao
    • , Xiao Zhou
    • , Bing-Zhi Li
    • , Ying-Jin Yuan
    •  &  Jef D. Boeke
  • Nature Communications | Article | open

    The use of synthetic chromosomes and the recombinase-based SCRaMbLE system could enable rapid strain evolution through massive chromosome rearrangements. Here the authors present ReSCuES, which uses auxotrophic markers to rapidly identify yeast with rearrangements for strain engineering.

    • Zhouqing Luo
    • , Lihui Wang
    • , Yun Wang
    • , Weimin Zhang
    • , Yakun Guo
    • , Yue Shen
    • , Linghuo Jiang
    • , Qingyu Wu
    • , Chong Zhang
    • , Yizhi Cai
    •  &  Junbiao Dai
  • Nature Communications | Article | open

    The International Synthetic Yeast Sc2.0 project has built Cre recombinase sites into synthetic chromosomes, enabling rapid genome evolution. Here the authors demonstrate L-SCRaMbLE, a light-controlled recombinase tool with improved control over recombination events.

    • Lena Hochrein
    • , Leslie A. Mitchell
    • , Karina Schulz
    • , Katrin Messerschmidt
    •  &  Bernd Mueller-Roeber