In the past decade marine microbiology has emerged as an important and dynamic discipline. To mark the significant progress enjoyed by this exciting field, Nature Reviews Microbiology has specially commissioned a collection of articles that highlight the latest advances and how they are leading to a new understanding of biodiversity, ecology and biogeochemistry.

The topics covered range from recent advances in our understanding of marine ecology and metagenomics to the remote sensing of microorganisms and ecological modelling. This Focus Issue also features the marine viruses that are believed to shape microbial ocean communities, and the question of microbial abundance in the extremely harsh conditions of the deep ocean biosphere. The accompanying library collects the most relevant recent publications from Nature Publishing Group.

Research Highlight

Evolution: Share and share alike...

Susan Jones


Nature Reviews Microbiology 5, 744-745



Modern microbial seascapes

Edward F. DeLong


Nature Reviews Microbiology 5, 755-757



Microbial oceanography: paradigms, processes and promise

David M. Karl


Nature Reviews Microbiology 5, 759-769

David Karl provides a critical review of the exciting new discipline of microbial oceanography by discussing selected key advances. These include probing the metabolic balance in the oceans, the exciting discovery of bacterial proteorhodopsin, establishing a long-term ocean observatory, the unexpected role of marine Archaea, and attempts to understand the result of perturbing nutrient levels in the sea.

Feast and famine — microbial life in the deep-sea bed

Bo Barker Jørgensen & Antje Boetius


Nature Reviews Microbiology 5, 770-781

The deep-sea environment comprises a wealth of distinct ecosystems, such as hydrothermal vents, cold seeps and subsurface habitats. A multitude of bacteria and archaea live in these distant niches, and face challenges for growth at extremes of temperature, pressure and carbon limitation. This Review describes life in the deep-sea biosphere and discusses how microorganisms overcome the scarcity of energy resources, which is relevant to understanding the limitations to, and the diversity of, life on Earth.

Microbial structuring of marine ecosystems

Farooq Azam & Francesca Malfatti


Nature Reviews Microbiology 5, 782-791

In this Review, the authors discuss the benefits of thinking about the ocean in terms of microniches and advocate the study of global processes on a microscale. Farooq Azam and Francesca Malfatti stress the need to study oceanic microbiology in situ and to use this as a unifying basis for modelling the influence of microorganisms on the structure of marine ecosystems. This might lead to new insights into the regulation of primary production and carbon cycling.

Resourceful heterotrophs make the most of light in the coastal ocean

Mary Ann Moran & William L. Miller


Nature Reviews Microbiology 5, 792-800

In coastal systems mixed metabolic strategies of marine heterotrophic bacteria have implications for how efficiently organic carbon is retained in the marine food web, and how climatically important gases are exchanged between the ocean and the atmosphere. These resourceful heterotrophs use light, either directly or indirectly, to obtain supplemental energy and decrease their reliance on organic matter. This Review highlights these mechanisms and their importance to coastal carbon cycling by marine bacteria.

Marine viruses — major players in the global ecosystem

Curtis A. Suttle


Nature Reviews Microbiology 5, 801-812

If stretched end to end, the estimated 1030 viruses in the oceans would span farther than the nearest 60 galaxies. This reservoir of genetic and biological diversity continues to yield exciting discoveries and, in this Review, Curtis A. Suttle highlights the areas that are likely to be of greatest interest in the next few years.



Mix and match: how climate selects phytoplankton

Paul G. Falkowski & Matthew J. Oliver


Nature Reviews Microbiology 5, 813-819

Unlike prokaryotes, which do not leave a fossil trail, the patterns of change over evolutionary time of eukaryotic phytoplankton can be derived from microfossils. Here, Paul Falkowski and Matthew Oliver use the fossil record, resource competition theory and the physical principles of ocean dynamics to propose how climate might have affected phytoplankton populations in the past, and make predictions for the future.

The importance of culturing bacterioplankton in the 'omics' age

Stephen Giovannoni & Ulrich Stingl


Nature Reviews Microbiology 5, 820-826

Stephen Giovannoni and Ulrich Stingl discuss recent advances in the cultivation of bacterioplankton, and review the new insights into the ecology and physiology of these microorganisms that have been enabled by metagenomic and population studies of cultivated strains.


Extra navigation

Supported by