Collection

2015 Nobel Prize in Physics

The 2015 Nobel Prize in Physics has been awarded to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass".

In celebration, our editors have drawn together this Collection of content from NatureNature Physics and Nature Communications. Some items are linked directly to the prize-winning discovery, others paint in interesting details of the neutrino story  which begins with Wolfgang Pauli’s postulation in the 1930s and continues today in a variety of imaginative experiments around the world.

Whether neutrinos originate in an accelerator, in a reactor, in the Earth itself, in the atmosphere, in the Sun or in a distant supernova; whether they are detected in deep mines, beneath mountains or in the Antarctic ice — their physics is undeniably varied, and fascinating. We hope you will enjoy this Collection.

 

News and Comment: includes accounts of the discovery of neutrino oscillations, and other milestones in neutrino physics, by previous Nobel laureates such as Frederick Reines, Frank Wilczek and Sheldon Glashow

Reviews and Research: includes some recent research in neutrino physics; a review of neutrino oscillation studies using reactors; reviews by neutrino pioneers Raymond Davis and John Bahcall; and a review of the history of 'the 17-keV neutrino'.

Reviews and Research

  • Nature Communications | Review Article | open

    The observation of neutrino oscillations indicates that neutrinos have mass and that their flavours are quantum mechanical mixtures. Here, the authors review the past, present and future contributions of nuclear reactor-based neutrino oscillation experiments, their accomplishments and the remaining challenges.

    • P. Vogel
    • , L.J. Wen
    •  &  C. Zhang
  • Nature | Article

    Neutrinos are known to have mass, in contradiction to the predictions of the standard model, and one explanation of this mass is that they are Majorana fermions; this conjecture could be proved by observation of the neutrinoless double-β decay process, but new experiments with 136Xe find no statistically significant evidence for this process.

    • The EXO-200 Collaboration
    • , J. B. Albert
    • , D. J. Auty
    • , P. S. Barbeau
    • , E. Beauchamp
    • , D. Beck
    • , V. Belov
    • , C. Benitez-Medina
    • , J. Bonatt
    • , M. Breidenbach
    • , T. Brunner
    • , A. Burenkov
    • , G. F. Cao
    • , C. Chambers
    • , J. Chaves
    • , B. Cleveland
    • , M. Coon
    • , A. Craycraft
    • , T. Daniels
    • , M. Danilov
    • , S. J. Daugherty
    • , C. G. Davis
    • , J. Davis
    • , R. DeVoe
    • , S. Delaquis
    • , T. Didberidze
    • , A. Dolgolenko
    • , M. J. Dolinski
    • , M. Dunford
    • , W. Fairbank Jr
    • , J. Farine
    • , W. Feldmeier
    • , P. Fierlinger
    • , D. Fudenberg
    • , G. Giroux†
    • , R. Gornea
    • , K. Graham
    • , G. Gratta
    • , C. Hall
    • , S. Herrin
    • , M. Hughes
    • , M. J. Jewell
    • , X. S. Jiang
    • , A. Johnson
    • , T. N. Johnson
    • , S. Johnston
    • , A. Karelin
    • , L. J. Kaufman
    • , R. Killick
    • , T. Koffas
    • , S. Kravitz
    • , A. Kuchenkov
    • , K. S. Kumar
    • , D. S. Leonard
    • , F. Leonard
    • , C. Licciardi
    • , Y. H. Lin
    • , R. MacLellan
    • , M. G. Marino
    • , B. Mong
    • , D. Moore
    • , R. Nelson
    • , A. Odian
    • , I. Ostrovskiy
    • , C. Ouellet
    • , A. Piepke
    • , A. Pocar
    • , C. Y. Prescott
    • , A. Rivas
    • , P. C. Rowson
    • , M. P. Rozo
    • , J. J. Russell
    • , A. Schubert
    • , D. Sinclair
    • , S. Slutsky
    • , E. Smith
    • , V. Stekhanov
    • , M. Tarka
    • , T. Tolba
    • , D. Tosi
    • , K. Twelker
    • , P. Vogel
    • , J.-L. Vuilleumier
    • , A. Waite
    • , J. Walton
    • , T. Walton
    • , M. Weber
    • , L. J. Wen
    • , U. Wichoski
    • , J. D. Wright
    • , L. Yang
    • , Y.-R. Yen
    • , O. Ya. Zeldovich
    •  &  Y. B. Zhao
  • Nature | Article

    Spectral observations of the low-energy neutrinos produced by proton–proton fusion in the Sun demonstrate that about 99 per cent of the Sun’s power is generated by this process.

    • Borexino Collaboration
    • , G. Bellini
    • , J. Benziger
    • , D. Bick
    • , G. Bonfini
    • , D. Bravo
    • , B. Caccianiga
    • , L. Cadonati
    • , F. Calaprice
    • , A. Caminata
    • , P. Cavalcante
    • , A. Chavarria
    • , A. Chepurnov
    • , D. D’Angelo
    • , S. Davini
    • , A. Derbin
    • , A. Empl
    • , A. Etenko
    • , K. Fomenko
    • , D. Franco
    • , F. Gabriele
    • , C. Galbiati
    • , S. Gazzana
    • , C. Ghiano
    • , M. Giammarchi
    • , M. Göger-Neff
    • , A. Goretti
    • , M. Gromov
    • , C. Hagner
    • , E. Hungerford
    • , Aldo Ianni
    • , Andrea Ianni
    • , V. Kobychev
    • , D. Korablev
    • , G. Korga
    • , D. Kryn
    • , M. Laubenstein
    • , B. Lehnert
    • , T. Lewke
    • , E. Litvinovich
    • , F. Lombardi
    • , P. Lombardi
    • , L. Ludhova
    • , G. Lukyanchenko
    • , I. Machulin
    • , S. Manecki
    • , W. Maneschg
    • , S. Marcocci
    • , Q. Meindl
    • , E. Meroni
    • , M. Meyer
    • , L. Miramonti
    • , M. Misiaszek
    • , M. Montuschi
    • , P. Mosteiro
    • , V. Muratova
    • , L. Oberauer
    • , M. Obolensky
    • , F. Ortica
    • , K. Otis
    • , M. Pallavicini
    • , L. Papp
    • , L. Perasso
    • , A. Pocar
    • , G. Ranucci
    • , A. Razeto
    • , A. Re
    • , A. Romani
    • , N. Rossi
    • , R. Saldanha
    • , C. Salvo
    • , S. Schönert
    • , H. Simgen
    • , M. Skorokhvatov
    • , O. Smirnov
    • , A. Sotnikov
    • , S. Sukhotin
    • , Y. Suvorov
    • , R. Tartaglia
    • , G. Testera
    • , D. Vignaud
    • , R. B. Vogelaar
    • , F. von Feilitzsch
    • , H. Wang
    • , J. Winter
    • , M. Wojcik
    • , A. Wright
    • , M. Wurm
    • , O. Zaimidoroga
    • , S. Zavatarelli
    • , K. Zuber
    •  &  G. Zuzel