Insight |

Nuclear Fusion

Harnessing the energy produced in nuclear fusion reactions is an ongoing grand challenge. This Insight focuses on the achievements made so far and the trials ahead, highlighting that at the core of nuclear fusion lies some fascinating physics.


Reviews & Commentary

Fusion power is one of a very few sustainable options to replace fossil fuels as the world's primary energy source. Although the conditions for fusion have been reached, much remains to be done to turn scientific success into commercial electrical power.

Commentary | | Nature Physics

Fusion research is driven by the applied goal of energy production from fusion reactions. There is, however, a wealth of fundamental physics to be discovered and studied along the way. This Commentary discusses selected developments in diagnostics and present-day research topics in high-temperature plasma physics.

Commentary | | Nature Physics

One way of realizing controlled nuclear fusion reactions for the production of energy involves confining a hot plasma in a magnetic field. Here, the physics of magnetic-confinement fusion is reviewed, focusing on the tokamak and stellarator concepts.

Review Article | | Nature Physics

For achieving proper safety and efficiency of future fusion power plants, low-activation materials able to withstand the extreme fusion conditions are needed. Here, the irradiation physics at play and fusion materials research is reviewed.

Review Article | | Nature Physics

The quest for energy production from controlled nuclear fusion reactions has been ongoing for many decades. Here, the inertial confinement fusion approach, based on heating and compressing a fuel pellet with intense lasers, is reviewed.

Review Article | | Nature Physics

Energy-producing nuclear fusion reactions taking place in tokamaks cause radiation damage and radioactivity. Remote-handling technology for repairing and replacing in-vessel components has evolved enormously over the past two decades — and is now being deployed elsewhere too.

Commentary | | Nature Physics

Construction of the ITER tokamak, arguably the largest scientific project ever, is well under way in the south of France. Nature Physics spoke with ITER's Director-General, Bernard Bigot, about the challenges ahead — a conversation about physics, engineering, politics and culture.

Interview | | Nature Physics

Although driven by the promise of almost limitless energy, fusion research touches on plenty of gripping, fundamental physics — and the wider scientific community has every reason to be supportive.

Editorial | | Nature Physics