Insight |
Nuclear Fusion
Harnessing the energy produced in nuclear fusion reactions is an ongoing grand challenge. This Insight focuses on the achievements made so far and the trials ahead, highlighting that at the core of nuclear fusion lies some fascinating physics.

Editorial
Reviews & Commentary
The quest for fusion power

Fusion power is one of a very few sustainable options to replace fossil fuels as the world's primary energy source. Although the conditions for fusion have been reached, much remains to be done to turn scientific success into commercial electrical power.
Applied and fundamental aspects of fusion science

Fusion research is driven by the applied goal of energy production from fusion reactions. There is, however, a wealth of fundamental physics to be discovered and studied along the way. This Commentary discusses selected developments in diagnostics and present-day research topics in high-temperature plasma physics.
Magnetic-confinement fusion

One way of realizing controlled nuclear fusion reactions for the production of energy involves confining a hot plasma in a magnetic field. Here, the physics of magnetic-confinement fusion is reviewed, focusing on the tokamak and stellarator concepts.
Computational challenges in magnetic-confinement fusion physics

Simulating magnetically confined fusion plasmas is crucial to understand and control them. Here, the state of the art and the multi-physics involved are discussed: electromagnetism and hydrodynamics combined over vast spatiotemporal ranges.
Materials research for fusion

For achieving proper safety and efficiency of future fusion power plants, low-activation materials able to withstand the extreme fusion conditions are needed. Here, the irradiation physics at play and fusion materials research is reviewed.
Inertial-confinement fusion with lasers

The quest for energy production from controlled nuclear fusion reactions has been ongoing for many decades. Here, the inertial confinement fusion approach, based on heating and compressing a fuel pellet with intense lasers, is reviewed.
Remote-handling challenges in fusion research and beyond

Energy-producing nuclear fusion reactions taking place in tokamaks cause radiation damage and radioactivity. Remote-handling technology for repairing and replacing in-vessel components has evolved enormously over the past two decades — and is now being deployed elsewhere too.
Building the way to fusion energy

Construction of the ITER tokamak, arguably the largest scientific project ever, is well under way in the south of France. Nature Physics spoke with ITER's Director-General, Bernard Bigot, about the challenges ahead — a conversation about physics, engineering, politics and culture.
Powerful physics

Although driven by the promise of almost limitless energy, fusion research touches on plenty of gripping, fundamental physics — and the wider scientific community has every reason to be supportive.