Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Nature has been a source of constant inspiration for chemists, not only because of the enormous variety of chemical compounds that living organisms can produce, but also because of the extraordinary biosynthetic strategies used to obtain them.
Leveraging the power of nature for sustainable chemical synthesis, utilizing enzymes as biocatalysts in chemical reactions can significantly accelerate product formation under mild reaction conditions (i.e. ambient temperature and pressure, neutral pH, etc.) and transform organic substrates with excellent chemo-, regio-, and stereoselectivity while preserving the requirements of environmental benignity. Therefore, enzymes have become an important tool for preparing chiral molecules in a highly efficient, straightforward, and selective fashion, often drastically outperforming the catalytic potential of synthetic transition-metal catalysts and organocatalysts.
Moreover, incorporating enzymes into chemical technologies can dramatically shorten the synthetic pathways, leading to less toxic waste generation and improved cost-efficiency. In this context, recent years have seen significant efforts in mimicking the metabolism of living organisms by combining several types of enzymes in a single reaction vessel to obtain complex molecules without isolating intermediates. Such artificial 'one-pot' biocatalytic cascade reactions have opened new avenues for challenging synthetic endeavors, especially for manufacturing chiral drugs, in which the chemical and optical purity of active pharmaceutical ingredients are paramount factors for therapeutic activity and safety of usage.
This Collection aims to present the latest progress in the chemoenzymatic syntheses of high-value-added organic compounds, which can be utilized in the production of drugs, agrochemicals, flavors and fragrances, food additives, cosmetics, natural products, etc. We also intend for the Collection to highlight ongoing challenges and opportunities in developing new biocatalysts or chemoenzymatic strategies, exploring new catalytic reactions, and supporting cutting-edge technologies that enable functional materials and biofuel production. In this context, we welcome both experimental and theoretical studies, with topics of interest including but not limited to:
Enzyme engineering
Multienzymatic cascades
Chemoenzymatic cascades
Metalloenzymes
Photo-biocatalysis
Multifunctional biocatalysts
Enzyme promiscuity
The Collection primarily welcomes original research papers in the form of both full articles and communications. All submissions will be subject to the same review process and editorial standards as regular Communications Chemistry Articles.
Imine reductases can catalyze reductive amination reactions to produce chiral amines, however, transformation of bulky amines has been challenging. Here, by using an increasing-molecule-volume-screening method, the authors identify a group of imine reductases that can accept bulky amines and achieve an efficient gram-scale synthesis of an API sensipar analogue.
Camptothecin derivatives are precursors of potent anticancer agents, but their biosynthesis remains largely unknown. Here two cytochrome P450 monooxygenases are shown to regiospecifically oxidize camptothecin, yielding 10- and 11- hydroxylated derivatives, which are subsequently used to produce a suite of known anticancer drugs and derivatives.
Diels-Alderases remain rare in nature, particularly those catalysing intermolecular reactions. Here two natural Diels-Alderases are shown to catalyse exo-selective intermolecular Diels-Alder reactions on non-natural substrates.
Threonine is a biosynthetic precursor to dimethylpyrazine derivatives, but the pathway by which this occurs is not fully established. Here l-throenine-3-dehydrogenase and 2-amino-3-ketobutyrate CoA ligase together are shown to convert l-threonine to dimethylpyrazine derivatives as a byproduct of glycine metabolism.
L-amino acid oxidases can convert racemic amino acids to D-isomers, but stable and structure-determined oxidases are scarce. Here, the authors report the structures, stabilities, and activities of two ancestral L-amino acid oxidases.
The 1-aryl-tetrahydroisoquinoline moiety is a desirable synthetic target, but generating single enantiomers of THIQ products is synthetically challenging. Here the authors demonstrate that the M97V variant of enzyme norcoclaurine synthase catalyzes the synthesis of (1 S)-aryl-THIQs in high yields and enantiomeric excesses.
The merger of chemical and biocatalysis can offer powerful new options to synthetic chemists. Here a combination of a nickel-catalyzed Suzuki-Miyaura reaction and an enzymatic stereoselective reduction provides enantiomerically-enriched alcohols from amides in a single reaction vessel, in water.